使用scikit-learn的随机森林对西瓜进行分类

1、数据源:  http://blog.csdn.net/wiking__acm/article/details/50971461
3、代码:
import pandas as pd
from sklearn import preprocessing
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score,make_scorer

train_data = pd.read_csv('D:\\workspace\\kaggle\\data\\zhouzhihua-gua\\train_data.csv')
test_data = pd.read_csv('D:\\workspace\\kaggle\\data\\zhouzhihua-gua\\test_data.csv')

#将数据转化未label(0-N)形式
def encode_features(df_train, df_test):
      features = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感']
      df_combined = pd.concat([df_train[features], df_test[features]])
      
      for feature in features:
            le = preprocessing.LabelEncoder()
            le = le.fit(df_combined[feature])
            df_train[feature] = le.transform(df_train[feature])
            df_test[feature] = le.transform(df_test[feature])
      
      return df_train, df_test
 
def simplify_interval_info(df):
      bins_density = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)
      bins_sugar = (0, 0.1, 0.2, 0.3, 0.4, 0.5)
      
      group_name_density = [0, 1, 2, 3, 4, 5, 6, 7]
      group_name_sugar = [0, 1, 2, 3, 4]
      
      category_density = pd.cut(df['密度'], bins_density, labels=group_name_density)
      categroy_sugar = pd.cut(df['含糖率'], bins_sugar, labels=group_name_sugar)
      
      df['密度'] = category_density
      df['含糖率'] = categroy_sugar
      
      return df
      
      

train_data, test_data = encode_features(train_data, test_data)
train_data = simplify_interval_info(train_data)
test_data = simplify_interval_info(test_data)

X_all = train_data.drop(['好瓜'], axis=1)
y_all = train_data['好瓜']
y_result = [1,0,0]


num_test = 0.50
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=3)

# Choose some parameter combinations to try
parameters = {'n_estimators':[5,6,7],
                     'criterion':['entropy', 'gini']
                     }
                     
# Type of scoring used to compare parameter combinations
acc_scorer = make_scorer(accuracy_score)
            
clf = RandomForestClassifier()

# Run the grid search
grid_obj = GridSearchCV(clf, parameters, scoring=acc_scorer)
grid_obj = grid_obj.fit(X_train, y_train)

# Set the clf to the best combination of parameters
clf = grid_obj.best_estimator_

clf = clf.fit(X_train, y_train)
test_predictions = clf.predict(X_test)
print("测试集准确率:   %s " % accuracy_score(y_test, test_predictions))

predictions = clf.predict(test_data)
print("最终准确率:   %s " % accuracy_score(y_result, predictions))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值