背景
“大数据”这个概念逐渐深入人心,很多公司都面临的着:
-
工具和平台的数量爆炸式增长
-
越来越多的人开始使用数据、应用数据
-
对于一个大企业而言,每个子公司/部门可能都有着属于自己的数据团队
总的来说,就是“大数据”中的“大”不仅仅是数据量大,也指的是数据种类多、数据来源复杂,不同的数据被各式各样的人使用。如何发现数据,确定数据的来龙去脉就成了一个急迫的问题。
OpenLineage 应运而生。
介绍 OpenLineage
OpenLineage 可以翻译成开源血缘。按照这个项目的发起者 Julien Le Dem 的说法,“数据血缘需要遵循开源社区贡献者商定的标准,以保证其各自解决方案生成的元数据的兼容性和一致性。”
Data lineage needs to follow a standard agreed upon by contributors to the open source community to guarantee the compatibility and consistency of the metadata produced by their respective solutions.
它回答的问题是:“谁生产数据?它是如何转变的?谁在使用它?数据血缘是 DataOps 的支柱,它提供了对组织内数据旅程中系统和数据集交互的可见性。”
Data lineage is the backbone of DataOps, providing visibility into the interaction of systems and datasets across the journey of data within an organization.
也给出了一个可用

本文介绍了OpenLineage项目,一个旨在提供数据血缘追踪的开源标准,以解决大数据环境下数据来源复杂、数据依赖关系难以追溯的问题。OpenLineage通过统一的数据模型,连接各种数据处理工具,如Airflow、Spark等,提供数据血缘的可见性和一致性。此外,还提到了Marquez作为OpenLineage的推荐实现,并讨论了其选择不实现列级别血缘的原因。尽管OpenLineage有成为行业标准的潜力,但目前其他类似项目如Databub、Amundsen并未明显受其影响。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



