用户画像系统架构——从零开始搭建实时用户画像(二)

本文探讨了在大数据背景下构建实时用户画像系统面临的挑战,包括大数据处理、实时性需求以及数据仓库的设计。提到了Hadoop、Storm、Kafka、Flink、Druid等技术在实时计算和数据仓库中的作用,并提出了依赖Hive、Druid、Kafka和Flink的系统架构设计,同时强调了需求明确和标签体系的重要性。
摘要由CSDN通过智能技术生成

​ 在《什么的是用户画像》一文中,我们已经知道用户画像对于企业的巨大意义,当然也有着非常大实时难度。那么在用户画像的系统架构中都有哪些难度和重点要考虑的问题呢?

挑战

  • 大数据
  • 随着互联网的崛起和智能手机的兴起,以及物联网带来的各种可穿戴设备,我们能获取的每一个用户的数据量是非常巨大的,而用户量本身更是巨大的,我们面临的是TB级,PB级的数据,所以我们必须要一套可以支撑大数据量的高可用性,高扩展性的系统架构来支撑用户画像分析的实现。毫无疑问,大数据时代的到来让这一切都成为可能,近年来,以Hadoop为代表的大数据技术如雨后春笋般迅速发展,每隔一段时间都会有一项新的技术诞生,不断驱动的业务向前,这让我们对于用户画像的简单统计,复杂分析,机器学习都成为可能。所以整体用户画像体系必须建立在大数据架构之上。

  • 实时性
  • 在Hadoop崛起初期,大部分的计算都是通过批处理完成的,也就是T+1的处理模式,要等一天才能知道前一天的结果。但是在用户画像领域,我们越来越需要实时性的考虑,我们需要在第一时间就得到各种维度的结果,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值