自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1206)
  • 资源 (4)
  • 收藏
  • 关注

转载 机器学习之keras模型保存为pb文件

keras模型是依赖tensorflow框架的,在恢复模型之前还需要再定义一遍网络结构,这对于部署到生产环境来说非常不方便。而转换为pb文件,可以独立运行,任何语言都可以解析它,同时方便部署到tf serving上。本文提供以下两种转换方法。方法1(推荐):适用于tf2.0之后的版本,但是1.0版本生成的hdf5文件也可以用此方法转换,前提必须在tf2.0环境下运行 方法2:适用于tf2.0之前的版本————————————————版权声明:本文为CSDN博主「纳米时速」的原创文章,遵

2022-12-07 14:56:35 5

转载 深度学习模型部署-triton

链接:https://www.zhihu.com/question/517971355/answer/2721126560老潘用triton有两年多了,一直想写个教程给大家。顺便自己学习学习,拖了又拖,趁着这次换版本的机会,终于有机会了写了。triton作为一个NVIDIA开源的商用级别的服务框架,个人认为很好用而且很稳定,API接口的变化也不大,我从2020年的20.06切换到2022年的22.06,两个大版本切换,一些涉及到代码的工程变动很少,稍微修改修改就可以直接复用,很方便。本系列讲解重点是结合实际

2022-12-07 13:51:33 12

原创 2022 Google 开发者大会-视频

2022 Google 开发者大会

2022-12-06 11:47:27 35

转载 点云数据如何快速生成三维模

在了解点云数据如何快速生成三维模型前,我们先来了解什么是点云数据,点云数据是怎么生成的。点云数据是指在一个三维坐标系统中的一组向量的集合,每一个点都包含有三维坐标,有些可能含有颜色信息或反射强度信息。颜色信息通常是通过相机获取彩色影像,然后将对应位置的像素的颜色信息赋予点云中对应的点。强度信息的获取是激光扫描仪接收装置采集到的回波强度,此强度信息与目标的表面材质、粗糙度、入射角方向,以及仪器的发射能量,激光波长有关。点云数据一般由3D扫描设备产生,例如三维激光扫描仪、扫描全站仪、激光雷达,立体摄像头,越渡时

2022-12-03 21:42:52 16

原创 大数据平台作业调度系统详解-理论篇

工作流调度系统做为大数据开发平台的核心组件,牵扯的周边系统众多,自身的业务逻辑也很复杂,根据目标定位的不同,场景复杂度和侧重点的不同,市面上存在众多的开源方案。但也正因为它的重要性和业务环境的高度复杂性,多数有开发能力的公司,还是会二次开发或者自研一套甚至多套系统来支撑自身的业务需求。

2022-12-02 09:24:19 102

转载 Python实例详解pdfplumber读取PDF写入Excel

PDF(Portable Document Format)是一种便携文档格式,便于跨操作系统传播文档。PDF文档遵循标准格式,因此存在很多可以操作PDF文档的工具,Python自然也不例外。其他几个 Python 库帮助用户从 PDF 中提取信息。专注PDF内容提取,例如文本(位置、字体及颜色等)和形状(矩形、直线、曲线),还有解析表格的功能。

2022-11-30 11:51:51 50

原创 【Java】 牛客网华为机试108题汇总

明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤1000),明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤1000),* 对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。* 写出一个程序,接受一个十六进制的数,输出该数值的十进制表示。

2022-11-30 07:24:58 46

原创 快速掌握6大模型部署框架(Pytorch+NCNN+MNN+Tengine+TensorRT+微信小程序)

快速掌握6大模型部署框架(Pytorch+NCNN+MNN+Tengine+TensorRT+微信小程序)

2022-11-22 08:35:48 282

转载 什么是TFserving?如何用TFserving部署深度学习模型?

TFserving的模型是通过模型名称和签名来唯一定位。线上模型如何更新而服务不中断:TFserving支持模型的不同的版本,如your_model中1和2两个版本,当你新增一个3模型时,TFserving会自动判断,自动加载模型3为当前模型,不需要重启。支持热更新:Source加载本地模型,通知Manager有新的模型需要加载,Manager检查模型的版本,通知Source创建的Loader进行加载模型。当你训好你的模型,需要提供给外部使用的时候,你就需要把模型部署到线上,并提供合适的接口给外部调用。

2022-11-22 07:34:02 79

原创 深度学习推理框架

现在主流的包括:TensorRT,ONNXRuntime,OpenVINO,ncnn,MNN 等。

2022-11-21 16:10:37 238

原创 姿态识别+校准|视觉技术新突破

通过边缘算法服务器连接一路或多路摄像头,从不同角度拍摄实时图像,采用边缘算法与摄像头组合配置的分布式网络结构,节省了采用传统 PC 算法服务器(配置 GPU 与 NPU)实现的成本,并且具有更灵活的算法节点扩展方式和高鲁棒性。针对各类院校考试和训练场景,通过固定式检测设备或手机应用程序,可自动识别判断各项运动的动作是否规范标准,规避因人工考评导致的误判、漏判、作弊等问题,便于针对性地制定更精准有效的训练方案。,会有效地检测这种坐姿偏移的情况,并配备同步语音提示功能,有助预防青少年近视。

2022-11-20 17:20:49 438

转载 基于 Openpose 实现人体动作识别

本项目针对当前行为监测中的精度不足、效率较低等问题,结合了openpose的姿态识别技术通过不同肢体之间的协调关系来搭建分类算法,并通过不同的分类算法比较,选择出最优模型搭建多目标的分类方法,最终可以实现多个目标的姿态显示、目标检测和分类的实时显示。在此次的模型中通过调用轻量级的openpose模型进行人体姿态识别,其主要的方法是通过openpose获取人体各个骨骼关键点位置,然后通过欧氏距离进行匹配两个骨骼来具体检测到每一个人,对于常见检测中骨骼关键点的缺失可以通过上一帧的骨骼信息进行填充。

2022-11-20 17:05:21 134

转载 基于Jetson Nano嵌入式平台的YOLOV3-tiny模型部署

目前,人工智能算法可以部署在云端和终端。在终端上运行检测算法有很多优点,比如只传输有价值的信息,而不是原始的大容量视频,可以有效降低后端部署服务器的传输带宽和计算存储量,使系统的整体架构更具可移植性。在模型推理阶段,可以适当降低了模型参数的精度,加快模型推理的速度,对模型推理结果影响不大。TensorRT是NVIDIA公司推出的GIE(GPU Inference Engine)C++库,其主要目的是要提高深度神经网络在其公司硬件产品上的推理速度,主要方式是通过更低精度的运算、神经网络计算结构的调整优化等。

2022-11-19 21:48:12 39

转载 Jetson嵌入式系列模型部署-1

本文旨在为大家提供jetson嵌入式系列模型部署两个简单的技术路线,直白的说就是给大家安利两个仓库分别是tensorrtx和。本文采用常见的yolov5(v6.0版本)目标检测算法实现在jetson nano上的模型部署工作(PS:手头只有nano,太穷了,😂)。假设各位看官的jetson nano环境配置已经完成,能够使用yolov5成功训练自己的数据集。我们重点关注jetson nano上的部署工作。有错误欢迎各位批评指正!!!本次训练的模型使用yolov5s-6.0,类别数为2,为口罩识别😷。

2022-11-19 16:47:31 41

转载 122个经典SOTA模型、447个算法实现资源,我们帮你一文汇总了

获取实现:https://sota.jiqizhixin.com/implements/huawei-atc_faster_r-cnn-resnet_101_cann_fp16。获取实现:https://sota.jiqizhixin.com/implements/huawei-atc_faster_r-cnn-resnet_101_cann_int8。

2022-11-19 15:26:24 32

转载 不可思议!英伟达Instant NeRF训练NeRF模型最快只需5秒,单张RTX 3090实时渲染,已开源

最后是神经辐射缓存(NRC)的直接可视化,其中网络预测每个像素路径的首个非镜面反射顶点的出射辐射,并根据实时路径跟踪器生成的光线进行在线训练。在这些编码中,最成功的是那些可训练、特定于任务的数据结构,它们承担了很大一部分学习任务。大型的、自然的 360 度场景(左)以及具有许多遮蔽和镜面反射表面的复杂场景(右)都得到了很好的支持。结果显示,多分辨率哈希编码实现了几个数量级的综合加速,能够在几秒钟内训练高质量的神经图形基元,并在数十毫秒内以 1920x1080 的分辨率进行渲染:如果你眨眼可能会错过它!

2022-11-18 11:50:15 93

转载 计图:5秒训好NeRF!已开源

我们注意到,随着NeRF训练速度的提升,框架的运行速度成为了限制NeRF速度进一步提升的瓶颈,近期有的工作(如Plenoxel)通过大量修改Pytorch源码才实现快速训练,而Instant-NGP则更是直接使用Cuda来达到速度的极致追求。准确复现了论文的速度和点数(见表1),其他深度学习框架复现的Instant-NGP在速度和点数上都距离原论文有一定差距,Jittor是全球唯一成功复现了Instant-NGP的框架。该工作通过Hash编码和定制化的优化,使得NeRF能在5秒训练出一个效果优质的结果。

2022-11-18 10:51:40 59

原创 ::在c++中什么意思

:是C++里的作用域分解运算符,“比如声明了一个类A,类A里声明了一个成员函数voidf(),但没有在类的声明里给出f的定义,那么在类外定义f时,就要写成voidA::f(),表示这个f()函数是类A的成员函数。作用域符号”::“的前面一般是类名称,后面一般是该类的成员名称,C++为例避免不同的类有名称相同的成员而采用作用域的方式进行区分。例如:A,B表示两个类,在A,B中都有成员member。1、A::member就表示类A中的成员member。2、B::member就表示类B中的成员member。

2022-11-17 16:21:25 354

转载 主流的深度学习推理架构有哪些呢?

原文:主流的深度学习推理架构有哪些呢?以深度学习为主的人工智能算法模型在日常AI应用中逐渐占据主流方向,相关的各类产品也是层出不穷。我们平时所看到的AI产品,像刷脸支付、智能语音、银行的客服机器人等,都是AI算法的具体落地应用。AI技术在具体落地应用方面,和其他软件技术一样,也需要具体的部署和实施的。既然要做部署,那就会有不同平台设备上的各种不同的部署方法和相关的部署架构工具,目前在人工智能的落地部署方面,各大平台机构也都是大展身手,纷纷推出自家的部署平台。目前市场上应用最广泛的部署工具主要有以下几种:腾讯

2022-11-17 14:32:45 48

转载 YOLOv5 的 Android 部署,基于 tflite

可以看到,转换后的模型是 yolov5s-fp16.tflite,同时,在同层目录下,还有个文件夹 yolov5s_saved_model,里面包含了 .pb 文件,就是 protobuf 文件,这里有个细节,就是 .pt 文件是先被转换成 .pb,然后再转换成 .tflite 的。需要替换的是 yolov5_android_tflite/app/src/main/assets 文件夹下的2个文件,class.txt 和 yolov5s-fp16.tflite。YOLOv5模型训练。

2022-11-17 14:00:26 125

转载 YOLOv4团队打造YOLOv7!最先进的实时目标检测网络来了!

YOLOv7 来了!超越YOLOv5、YOLOX、PPYOLOE、YOLOR等目标检测网络!YOLOv7 在 5 FPS 到 160 FPS 范围内的速度和准确度都超过了所有已知的目标检测器,并且在 GPU V100 上 30 FPS 或更高的所有已知实时目标检测器中具有最高的准确度 56.8% AP。YOLOv7官方开源 | Alexey Bochkovskiy站台,精度速度超越所有YOLO,还得是AB点击关注@CVer计算机视觉,第一时间看到最优质、最前沿的CV、AI工作~

2022-11-17 10:17:08 66

转载 【YOLO系列】YOLOv5、YOLOX、YOOv6、YOLOv7网络模型结构

例如下图所示,对于YOLOv5s中的depth_multiple参数为0.33,即在YOLOv5s这个版本模型中,如网络图中所示的第一个C3_1_x3代表着此处的C3结构有(n = 3 x 0.33 ≈ 0.99 < 1,此处代码中有判断,

2022-11-16 22:08:43 297

转载 深入浅出Yolo系列之Yolov5核心基础知识完整讲解

原文:大白在之前写过对的相关做了比较系统的梳理,但后不久,又出现了,虽然作者没有放上和的直接测试对比,但在COCO数据集的测试效果还是很可观的。很多人考虑到的,对算法是否能够,称得上而议论纷纷。但既然称之为,也有很多非常不错的地方值得我们学习。不过因为的网络结构和、相比,不好可视化,导致很多同学看看的云里雾里。因此本文,大白主要对Yolov5四种网络结构的各个细节做一个深入浅出的分析总结,和大家一些探讨学习。当然,随着旷视科技的发布,大白也深入研究,制作了,可以直接。

2022-11-16 20:34:14 60

原创 【小白学YOLO】YOLOv3网络结构细致解析

这是yolo_v3的大组件,yolo_v3开始借鉴了ResNet的残差结构,使用这种结构可以让网络结构更深(从v2的darknet-19上升到v3的darknet-53,前者没有残差结构)。在博客“Yolo发展历史及网络结构”中我们已经详细的解释了Yolov1的网络结构,并简要的提到了Yolov2与Yolov3对于网络结构的改进,本篇博客将详细介绍Yolov3的网络结构,内容比较简单。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。

2022-11-16 20:09:09 735

原创 Fast.ai 深度学习实战课程「中文字幕」

Fast.ai 深度学习实战课程「中文字幕」--深度学习视频教程-人工智能-CSDN程序员研修院

2022-11-16 13:55:08 219

转载 DenseNet详解

何恺明先生在提出ResNet时做出了这样的假设:若某一较深的网络多出另一较浅网络的若干层有能力学习到恒等映射,那么这一较深网络训练得到的模型性能一定不会弱于该浅层网络.通俗的说就是如果对某一网络中增添一些可以学到恒等映射的层组成新的网路,那么最差的结果也是新网络中的这些层在训练后成为恒等映射而不会影响原网络的性能.同样DenseNet在提出时也做过假设:与其多次学习冗余的特征,特征复用是一种更好的特征提取方式.

2022-11-16 12:05:01 21

转载 DenseNet稠密连接网络(pyTorch源码)

原文:https://blog.csdn.net/qq_43360533/article/details/107448369。

2022-11-15 16:57:32 30

转载 如何使用树莓派制作避障机器人

避障机器人的动力驱动,我们采用了L298N电机驱动模块,L298N驱动模块可以控制直流电机正转和反转,一块L298N驱动模块可以同时控制两个直流电机。这个项目中我们使用的是Raspberry Pi 3B,3B有一个64位的ARMv7四核处理器,内存为1GB,还内置了Wi-Fi和蓝牙。78xx系列IC中的xx表示它可以提供的稳定输出电压。学习Arduino或者树莓派的过程中,如果仅仅看代码或者做简单实验,那么常常会虎头蛇尾,所以我们建议还是尝试一些简单的机器人项目,这样既有趣也能不断学习提高。

2022-11-14 15:48:04 99

转载 (五)使用训练好的模型进行自动标注

原文链接:https://blog.csdn.net/qq_42102546/article/details/125303747。我训练识别4个类别:‘person’, ‘worker’, ‘no_helmet’, ‘helmet’在配置yaml文件时,找到yolov5下的data/coco128.yaml作为模板进行修改。我想要自动标注3个类别:‘person’, ‘no_helmet’, ‘helmet’你可以修改你想要自动标注的类别,比如你训练的4个类别的识别,你想自动标注其中一种。

2022-11-14 10:02:47 20

转载 文本数据标注平台-doccano安装使用教程

doccano 是一个开源的文本注释工具。它为文本分类、序列标记和序列到序列任务提供注释功能。因此,可以为情感分析、命名实体识别、文本摘要等创建标记数据。原文链接:https://blog.csdn.net/weixin_44384491/article/details/126159152。版权声明:本文为CSDN博主「一个又帅又正直的人」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。现在就可以在浏览器打开下面的链接,用刚才创建的用户名和密码进行登录,进行相关操作了。

2022-11-13 23:16:44 14

转载 2022年10 款最佳计算机视觉开源数据标注工具

我们最为推荐的开源标注工具是Heartex开发的 Label Studio,该工具分为付费和开源版本,即便是免费的开源版本,也足以支持广泛的标注类型,包括图像分类、目标检测、语义分割等,除了图像外,也可以用在音频、文本和 HTML场景的标注,并具有名为 Labeling Config 的独特配置,您可以在其中根据所需定制UI,Label Studio整合了多种算法辅助的自动化功能,包括可以基于现有AI模型对数据进行预标注。它允许标注多边形和图像分割mask,也可以通过在标注元素添加子标签进行图像分类。

2022-11-13 15:41:08 322

转载 在基于图像的深度学习中如何做数据的自动标注以及自动标注的等级介绍

基于图像的AI需要使用标注图像进行训练。这些标注也被称为“ground truth”、“labeled”或“annotated”数据。不同的数据科学模型有多种类型的“标注”。它们各不相同,包括"关键点","插值" ,"姿态估计"等等。

2022-11-13 15:37:40 126

转载 MySQL】高性能高可用表设计实战-表设计篇

本篇文章结合前面上一篇文章 MySQL建表与常见类型设计陷阱,结合上文所学的属性类型,本文详细介绍表结构的字段类型选择和表的物理存储设计,主要有库、表、字段、索引的命名规范,反范式的设计原则、表压缩。本篇文章结合前面上一篇文章 MySQL建表与常见类型设计陷阱,结合上文所学的属性类型,本文详细介绍表结构的字段类型选择和表的物理存储设计,主要有库、表、字段、索引的命名规范,反范式的设计原则、表压缩。对于没有分库分表的表,在物理存储层面主要是考虑是否要使用压缩(页)表功能,默认情况下,所有表都是非压缩的。

2022-11-13 14:45:40 34

转载 树莓派结合PIXHAWK飞控实现四轴双目视觉避障

运行应用程序:在/home/pi/Dvision 目录下,输入./ DvisionDemo,即可运行程序,可以看到。编译应用程序:进入/home/pi/Dvision 目录下,输入make,即可,再输入ls 命令,可以看到。首先,使用运行Mission Planner 地面站,点击-初始设置,选择安装固件,选择相应的固件即可。且按Enter 键,即可搜索到该参数,将该参数的值左键双击,设置为3,再点击右侧的-写入。Pixhawk端完成配置之后,则可以在MP地面站查看数据,类似雷达图。

2022-11-12 20:11:57 166

原创 如何使用树莓派制作避障机器人

学习Arduino或者树莓派的过程中,如果仅仅看代码或者做简单实验,那么常常会虎头蛇尾,所以我们建议还是尝试一些简单的机器人项目,这样既有趣也能不断学习提高。本文将向大家展示如何使用树莓派制作简单的避障机器人。

2022-11-12 11:12:03 286

转载 AI 杀疯了,NovelAI开源教程

AI 杀疯了,NovelAI开源教程

2022-11-04 19:13:07 62

转载 双目三维重建:双目摄像头实现双目测距(Python)

双目三维重建:双目摄像头实现双目测距(Python)_AI吃大瓜的博客-CSDN博客_双目摄像头测距

2022-11-04 18:57:11 306

原创 大数据集群修改服务器ip

因为下周要对大数据开放式平台的服务器进行机房搬迁,开放式平台有90台物理机,其中24台服务器是后来扩容新增的,ip段为19.126.66.*,与另外一个集群共用了同一个网段。根据机房的物理部署规划,搬迁是要对同一个网段批量进行的,因此在搬迁前需要对这24台服务器的ip进行修改。修改ip的变更本周四实施,因此今天在测试环境进行方案验证,对一台计算节点进行ip修改。修改/etc/ntp.conf文件中的146.32.19.254网关地址为新ip对应的网关146.32.18.254,并重启ntp服务。

2022-11-01 11:04:20 771

转载 卡尔曼滤波实例——预测橘子的轨迹

使用findContours函数,提取二值图中所有的轮廓,并采用cv2.RETR_TREE,建立轮廓等级树。最后,第一个轮廓的最小外边框的参数就可以用boundingRect获取到了。step3:将质心送入卡尔曼滤波器,获取到预测的下一次橘子的质心位置。(二)获取到图像中的包围橘子对应的白色图形的最小矩形框的信息。(二)获取到图像中的包围橘子对应的白色图形的最小矩形框的信息。三、将质心送入卡尔曼滤波器,获取下一次的质心位置。三、将质心送入卡尔曼滤波器,获取下一次的质心位置。二、获取橘子检测框的质心。

2022-10-30 18:23:45 116

转载 DeepSORT 多实时目标跟踪,pytorch代码,解析

卡尔曼滤波(Kalman Filter)是一个优化自回归数据的处理算法,是现代控制理论的一种经典算法,能够在系统存在许多不确定的情况下,通过之前的信息,来估计系统的状态。广泛应用在关于时间序列的分析领域中。先给出卡尔曼滤波的通用表达式。卡尔曼滤波的预测式的通用表达式为:卡尔曼滤波预测的一般通用表达式其中, xt 表示系统在 t 时刻系统状态的均值向量, Ak 表示k时刻的状态转移矩阵, Pk 表示k时刻的协方差矩阵, Qk,Bku→k 表示系统在k时刻的噪声矩阵。带 ~ 表示预测的估计矢量。

2022-10-30 17:55:04 51

2007年下半年系统分析师下午试卷Ⅱ.doc

2007年下半年系统分析师下午试卷Ⅱ.doc

2007-11-21

2007年下半年系统分析师下午试卷Ⅰ.doc

2007年下半年系统分析师下午试卷Ⅰ.doc

2007-11-21

2007年下半年系统分析师上午试卷.doc

2007年下半年系统分析师上午试卷.doc

2007-11-21

2007年下半年系统分析师考试试题分析.doc

2007年下半年系统分析师考试试题分析.doc

2007-11-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除