- 博客(391)
- 收藏
- 关注
原创 一文讲清:如何才能实现一个多模态RAG系统呢?
摘要:多模态RAG系统通过融合文本、图像等异构数据,突破传统RAG的文本局限,实现更全面的信息处理。其实现流程包括文档解析、多模态嵌入融合和上下文构建三个核心环节,需解决跨模态对齐、语义关联等挑战。尽管面临工程落地难题,多模态RAG在工程设计图等场景已展现应用价值。随着AI大模型快速发展,掌握多模态技术将成为应对行业人才缺口的重要方向。(149字)
2026-02-10 18:18:06
413
原创 知识图谱是啥?与关系型数据库有何区别?
知识图谱是一种结构化语义知识库,通过"实体-关系-实体"三元组构建概念间的关联网络。相比关系型数据库,它能更高效处理复杂关联查询,具备统一表达、语义丰富、知识复用和图运算等特性。构建过程包括数据获取、信息抽取、知识融合与加工等环节,广泛应用于搜索优化、智能问答和大数据分析领域。作为AI核心技术,知识图谱正推动各行业智能化升级,实现知识资源的系统化管理与高效利用。
2026-02-09 17:49:35
516
原创 AI Agent五种常见的设计模式,建议收藏!
ReAct全称Reasoning+Acting,即“先思考,再行动”。模型不直接生成最终答案,通过显式推理步骤判断是否调用外部工具(如搜索引擎、数据库等),再根据反馈继续推理与执行,直至完成任务。
2026-02-05 11:57:47
375
原创 想转行做AI大模型算法工程师需要搞定哪些知识呢?
大模型学习核心要点速览 本文由6年大厂算法工程师分享大模型学习的核心要点,强调Transformer架构的深入理解与实践。建议通过动手调试迷你模型掌握自注意力机制,重点学习Decoder-only架构和主流微调方法(LoRA/QLoRA等)。必备工具包括HuggingFace生态和PyTorch,需掌握显存估算、模型评估指标(ROUGE/BLEU)及RAG应用范式。深度学习基础需巩固梯度下降、损失函数等概念,数学重点复习概率论和线性代数。计算机基础要求Python、Linux等技能,数据工程能力尤为关键。文
2026-02-03 20:48:16
574
原创 多智能体(Multi-Agent)架构如何实现意图理解、规划与工具调用的解耦
摘要:企业在构建AI智能体时,普遍存在追求"全能型"的误区,但实际业务场景需要的是专业分工、结果可控的"数字员工团队"。文章指出单智能体架构存在复杂性失控、专业度稀释和维护困难三大困局,提出转向"多智能体微服务"协同网络,通过专业分工(接待、核算、流程等智能体)、中央调度和规则约束,实现系统级的可靠性。这种架构具备复杂度分解、专业化深耕、可维护性提升和资产化沉淀四大优势,建议企业从高成熟度环节切入,采用渐进式演进路径,最终实现从"演示De
2026-01-31 21:15:52
617
原创 金三银四想转行AI产品经理......
AI产品经理正成为未来五年最具潜力的职业方向。文章指出当前职场人转型AI领域的三大误区:观望者缺乏实践、探索者知识碎片化、跑偏者过度钻研算法。真正的AI产品经理应聚焦应用层,掌握AI项目全流程落地能力,而非成为算法专家。文章提出三步转型路径:夯实产品基础→掌握AI项目落地→补充AI知识,并强调企业最需要的是能连接技术与商业的应用型人才。面对AI行业千万人才缺口,建议职场人抓住风口,通过系统学习实现职业跃迁。
2026-01-30 11:02:01
608
原创 一文讲清:多模态Embedding模型分类,建议收藏!
多模态嵌入模型可分为模态融合与独立嵌入两种实现方式,旨在解决异构数据(图像、文本、音频等)的统一向量化问题。其核心是将不同模态数据映射至共享语义空间,实现跨模态检索。当前主流方案仍依赖文本提取而非端到端融合,主要应用于文搜图、图搜图等场景。尽管技术尚未成熟,多模态嵌入为AI应用提供了重要桥梁,但面临部署成本高、效果欠佳等挑战。
2026-01-29 21:03:51
638
原创 一文讲清:多模态检索的实现原理与路径
多模态RAG系统面临跨模态检索的关键挑战,主要采用直接表示法和间接表示法两种路径。间接法通过文本中介实现模态转换,而直接法则将不同模态数据映射到统一语义空间。技术实现涉及多模态融合(早期/中期/晚期)和对齐策略(显式/隐式),需专用Embedding模型支持。尽管多模态AI发展迅速,其优化方案仍存在较大探索空间,特别是在跨模态语义对齐和特征融合方面。
2026-01-28 16:40:29
923
原创 一个普通本科生,硬磕AI大模型的心路历程......
我就是那种扔在人堆里找不着的普通本科生,二本院校,学的是万金油似的工商管理,没什么硬核技能,毕业就跟着大流进了家小公司做行政,每天复印文件、整理报表、应付各种杂事,混了大半年,越干越慌。
2026-01-27 12:14:27
498
原创 我的AI大模型转行心路历程......
我做后端开发五年,说得直白点,就是天天跟CRUD死磕,偶尔优化下接口性能、排查下线上bug,日子过得像上了发条的钟,稳是稳,但越往后越慌。
2026-01-24 20:42:26
693
原创 Embedding嵌入模型是什么?为什么需要 Embedding?
Embedding模型是AI系统的核心组件,它将文本、图像等信息编码为高维向量,实现语义理解和计算。其核心价值在于:1)通过向量相似度计算实现语义匹配;2)支持高效检索和多模态扩展;3)为下游AI任务提供基础表征。工作原理包括分词、向量化、模型处理和归一化等步骤,在训练阶段通过自监督学习建模语义关系,推理阶段快速生成语义向量,应用阶段支持相似度计算和高效检索。随着AI技术快速发展,掌握Embedding等核心技术将为职业发展带来新机遇。
2026-01-22 23:14:09
604
原创 Agent和Workflow有什么区别?看完就悟了!
本文系统阐述了智能体(Agent)与工作流(Workflow)在构建Agentic系统中的协同关系。工作流通过预设流程确保业务执行的确定性,而智能体则赋予系统动态决策能力。文章分析了六种典型工作流范式:增强型LLM、提示词链接、路由、并行、编排工作者和评估者-优化者,并指出应根据业务场景选择合适的工作流类型。通过开源平台Dify、N8N与Coze的实例,展示了如何将理论架构转化为工程实践,强调在保持系统简洁性的同时实现智能化与稳定性的平衡。
2026-01-21 22:26:55
850
原创 RAG进阶篇 | 混合检索+重排序=王炸!
摘要:RAG应用中单一向量检索存在专有名词匹配失败和语义漂移问题。解决方案是采用混合检索(结合向量与关键词检索)和重排序机制,通过RRF算法融合不同检索结果,并利用Cross-Encoder模型进行精准排序。这种分层过滤策略能有效提升召回率和精度,尤其适用于术语密集或精确匹配需求高的场景。建议根据实际需求选择架构,平衡效率与准确性。(149字)
2026-01-16 21:33:51
801
原创 不靠模仿的第三条路:DeepSeek 凭数学推导,为何撞上 Google 的工程直觉?
摘要: 2025年6月,Google推出轻量化大模型Gemma 3n,其创新设计(如分层嵌入PLE和AltUp机制)引发技术圈争议。半年后,DeepSeek通过理论论文揭示Gemma 3n的工程实践与数学最优解高度吻合:PLE对应“条件记忆”机制,AltUp则实现“宽残差流稀疏扩展”。研究表明,静态参数占比10%-30%时模型效能最优,而层级化部署和上下文感知门控是关键。Gemma 3n的“宽度扩展”问题通过稀疏近似解决,印证了DeepSeek提出的流形约束理论。两大团队殊途同归,为高效大模型架构开辟了新路
2026-01-14 22:40:22
617
原创 一文讲清:RAG中语义理解和语义检索的区别到底是什么?有何应用?
本文探讨了语义理解和语义检索在RAG架构中的区别与应用。语义理解是大模型固有的语言解析能力,在智能体架构中处于核心地位;而语义检索则是基于向量相似度计算的检索方法,主要用于匹配用户问题的相关文档。文章指出,向量数据库的本质是在传统数据库基础上增加向量计算功能,并非完全颠覆性技术。在RAG流程中,语义理解负责解析用户意图并生成查询参数,语义检索则负责召回相关信息。最后强调了AI大模型领域的人才需求和发展机遇,并提供了相关学习资源获取途径。
2026-01-12 16:40:16
1012
原创 AI Agent 架构核心:如何构建多意图路由与动态查询分发引擎
构建高效AI智能体的关键:意图路由与查询重写技术 摘要:本文探讨了构建智能体系统的两大核心技术:意图路由和查询重写。意图路由通过精准分类将用户请求导向合适的工作流,而查询重写则优化自然语言表达为结构化查询。文章提供了通用Prompt模板,并介绍了HyDE等高级策略,强调这些预处理模块是区分普通对话机器人与智能业务助手的核心要素。随着AI大模型快速发展,掌握这些技术对应对未来AI领域人才需求具有重要意义。
2026-01-09 15:13:16
630
原创 一文讲清:主流大模型推理部署框架:vLLM、SGLang、TensorRT-LLM、ollama、XInference
本文系统梳理了当前主流的大模型推理部署框架,包括vLLM、SGLang、TensorRT-LLM、Ollama和XInference等。这些框架在核心技术、性能优化和应用场景上各有特色:vLLM通过PagedAttention和连续批处理提升显存利用率;SGLang利用Radix树优化缓存复用;TensorRT-LLM深度优化NVIDIA GPU性能;Ollama简化本地部署;XInference支持分布式推理。分析表明,不同框架适用于高并发、低延迟或轻量级等不同场景,为模型选型提供了重要参考。
2026-01-08 00:51:11
989
原创 多模态大模型有哪些模态?
多模态大模型能够处理文本、图像、视频、音频等多种数据形式,通过整合不同模态信息提升语义理解和任务执行能力。其核心特征包括跨模态数据处理、多源信息融合以及性能优化,广泛应用于图像字幕生成、视频分析等领域。随着AI技术的快速发展,大模型人才需求激增,预计2025年AI领域缺口达1000万人。学习AI大模型需要系统化路径,零基础者也可通过在线资源逐步掌握相关技能。
2026-01-06 23:52:11
917
原创 AI Agent 记忆系统设计:短期记忆与长期记忆
本文探讨了如何通过构建记忆系统将LLM从无状态函数进化为智能Agent。文章指出,记忆分为短期记忆(上下文窗口)和长期记忆(向量数据库),并分析了各自的优化策略。短期记忆采用滑动窗口和摘要压缩,长期记忆通过RAG机制实现检索增强。最终提出记忆巩固机制,使两种记忆能动态流动,强调智能记忆的关键在于有价值信息的筛选而非全盘存储。文章还穿插了AI行业发展趋势和人才培养的广告内容。
2026-01-06 23:27:45
618
原创 一文彻底厘清:AI Agent、Agentic Workflow与Agentic AI
AI Agent、Agentic Workflow与Agentic AI是人工智能领域三个关键概念:AI Agent作为自主执行单元,完成感知-决策-行动闭环;Agentic Workflow是结构化任务框架,协调多个Agent完成复杂流程;Agentic AI则是系统级范式,整合前两者并强调多Agent协作与治理。三者形成"执行单元-流程框架-系统范式"的递进关系,共同推动AI从被动工具向主动执行者演进。随着大模型技术发展,这些概念正重塑AI应用形态,带来新的技术机遇与挑战。
2026-01-06 23:16:40
611
原创 智能体迈入 Agent RL 新架构时代?
Chatbot 的交互模式早已为大众所熟知:用户通过命令行与 LLM 进行轮番对话。投资人曾对 Chatbot 市场持悲观态度,并非毫无依据。其核心问题在于交互过程的高认知负荷:用户需时刻紧盯屏幕,绞尽脑汁设计提示词(Prompt),最终还需手动将结果迁移至实际业务场景。这种 “不够顺畅” 的体验,导致效率提升有限,用户粘性极低。
2026-01-06 23:08:54
820
原创 Agent全面爆发!一文搞懂Agent开发核心链路
智能体正从对话工具升级为自主决策系统,核心挑战转向如何设计可靠的结构。设计模式成为关键,旨在分层隔离不确定性、控制风险并拆分复杂任务。基础工作流模式包括并行化、链式执行和智能路由,提升效率与可靠性。高级模式引入反思机制、动态规划和多智能体协作,使系统具备自我修正能力。工具与知识模式则让智能体真正落地业务场景。这种结构化思维将决定智能体在业务执行层的上限,而不仅是模型本身的能力。
2026-01-06 23:05:15
941
原创 RAG知识库远远没有你想象中的那么简单!
摘要:知识库系统是大模型应用的核心基础设施,既需要技术实现,也蕴含设计哲学。作为模型的"外部记忆",知识库拓展了AI的能力边界,支持RAG、智能体等各类应用场景。模型与知识库的关系如同专家与后勤团队,二者协同提升整体智能水平。随着AI快速发展,构建高效、可扩展的知识库系统成为关键技术挑战。文章还提供了AI大模型学习资源,帮助读者把握行业机遇。(149字)
2026-01-04 23:15:59
881
原创 大模型在数据分析领域的应用——怎么让模型生成更准确的SQL语句实操
摘要: 本文探讨如何优化大模型在数据分析中的应用,特别是通过改进提示词设计来提升SQL等代码生成能力。关键步骤包括:1)构建清晰的角色定义和规则约束提示词;2)获取并解析数据库元数据(表结构、字段属性等);3)补充少量示例数据帮助模型理解数据结构;4)实施SQL安全校验防止危险操作。文章强调AI大模型在数据分析领域的潜力,指出该领域存在巨大人才缺口,并提供相关学习资源链接。通过结构化数据输入和精准提示设计,可显著提升大模型数据分析的可靠性和实用性。(149字)
2026-01-04 22:50:19
749
原创 LangGraph 是什么?一文秒懂且通俗易懂!
本文介绍了如何用LangGraph构建AI工作流,通过状态机、节点和边三大要素实现复杂流程的可视化控制。文章以一个交友流程为例,展示了如何用LangGraph封装每个步骤,并引入LLM模型处理任务。核心内容包括:1)LangGraph的三要素(State状态机、Node节点函数、Edge流程控制);2)通过代码示例演示了条件分支和状态传递的实现;3)强调LangGraph将复杂步骤封装为可维护模块的优势。最后指出LangGraph本质是图形处理引擎,可帮助开发者更好地组织AI工作流。文章还穿插了AI行业前景
2026-01-04 20:24:46
831
原创 总是有人搞混 RAG 与 CAG,一篇讲透怎么选!
摘要:大语言模型(LLM)的知识整合面临检索增强生成(RAG)和缓存增强生成(CAG)两种方案。RAG通过实时检索外部数据库动态更新知识,具有实时性强、降低幻觉等优势,但存在系统复杂、延迟高等问题。CAG通过预加载信息到缓存提升响应速度,适用于重复查询场景,但面临信息过时、内存需求大等挑战。两者在架构、灵活性及适用场景上各具特点,需根据业务需求选择。随着AI技术发展,掌握这些知识整合方法对应对行业挑战至关重要。
2026-01-04 17:42:17
690
原创 AI大语言模型中的强化学习理论——PPO
本文介绍了强化学习在AI大模型后训练过程中的应用,重点解析了PPO(近端策略优化)算法。文章首先阐述了强化学习的基本概念及其在大模型中的作用,指出强化学习能提供更灵活的奖励机制,帮助模型更好地对齐人类偏好。随后详细讲解了PPO算法流程,包括奖励模型训练、数据采样、反馈评估等关键步骤,并重点介绍了GAE(广义优势估计)模块如何计算动作优势值。作者采用拟人化方式解释技术概念,旨在帮助读者理解强化学习如何提升大语言模型的性能和适应性。
2026-01-04 17:27:20
1061
原创 大语言模型之AI Agent:Multi-Agent架构
摘要: 多智能体系统通过分解复杂任务为轻量子代理协同处理,有效应对单智能体在工具调用、上下文处理等方面的瓶颈。架构模式包括并行、顺序、循环、路由、聚合等,支持灵活的任务编排。其中交接机制实现智能体间控制权转移,而主管模式则引入监管节点协调执行流程。研究表明,多智能体架构在需专业分工、动态扩展的场景中优势显著,但并非所有任务都适用,需权衡效率与成本。随着AI大模型快速发展,掌握多智能体技术成为新兴行业的重要方向。
2025-12-31 18:22:02
971
原创 Prompt工程策略:如何引导AI模型达成期望结果
文章摘要 Prompt是引导AI模型生成特定响应的文本输入,可分为硬提示(手工制作)和软提示(自动生成)。按交互方式分为在线提示(实时互动)和离线提示(预先准备)。Prompt包含六大要素:任务、上下文、示例、角色、格式和语气。模型通过分词、向量转换和概率预测生成文本,采用贪婪采样、束搜索或随机采样等策略选择输出。温度参数影响生成结果的随机性,温度越高输出越多样,越低则越确定。
2025-12-31 16:01:54
583
原创 为什么多数的RAG项目死在了Demo?从数据清洗到路由控制,拆解RAG落地的四大难点
摘要:本文探讨了AI大模型在企业应用中的"最后一公里难题",包括幻觉、长上下文遗忘和知识滞后等问题。重点介绍了RAG(检索增强生成)技术如何通过数据预处理、检索重排序、索引路由和生成控制等模块化工程解决这些痛点。文章提出"弱模型,强系统"的架构设计哲学,强调企业AI应用成功的关键在于数据治理能力和系统工程能力,而非单纯依赖大模型参数规模。最后指出AI领域人才缺口巨大,呼吁读者抓住机遇学习相关技术。
2025-12-31 15:21:20
818
原创 大语言模型智能体强化学习:全景综述
本文提出智能体强化学习(Agentic RL)这一新兴范式,将大语言模型从静态生成器转变为嵌入动态环境的自主决策智能体。通过形式化对比传统LLM强化学习的单步MDP与Agentic RL的扩展POMDP,建立了理论框架。文章构建了双重分类体系:基于规划、工具使用等核心能力维度,以及这些能力在多领域任务中的应用。研究强调强化学习是实现智能体自适应行为的关键机制,并整合了开源环境、基准测试等实践资源。通过对500余篇文献的系统分析,揭示了这一快速发展领域的现状与挑战,为构建通用型AI智能体提供了研究蓝图。
2025-12-31 15:12:52
999
原创 做 agent 业务落地真的建议做减法!
摘要:Agent业务落地需做减法,避免过度依赖复杂工具和冗长上下文。核心原则是仅保留必要且充分的信息、工具与流程。通过精准检索、工具精选、上下文隔离与压缩等技术,可显著提升效率。建议采用轻量流水线架构,结合文件系统存储中间结果,实现高效信息管理。关键策略包括RAG精准检索、工具动态装载、上下文修剪与摘要等,确保模型专注核心任务,避免冗余干扰。
2025-12-31 15:06:55
758
原创 一文讲清:AI大模型的并行训练方式:DP、PP、TP、EP
AI大模型训练主要依赖四种并行计算架构:数据并行(DP)、流水线并行(PP)、张量并行(TP)和专家并行(EP)。数据并行通过切分数据并同步梯度实现高效训练,但显存消耗大;流水线并行将模型分层处理,存在GPU闲置问题;张量并行对单层运算横向切分,降低内存压力但通信成本高;专家并行则针对MoE模型,由路由网络分配任务给不同专家层。这些方法各有优劣,需根据模型规模和数据特点灵活组合使用,以提升训练效率并解决显存和通信瓶颈。
2025-12-30 14:15:54
771
原创 大模型已经会“搜索资料”了,但它真的会“做研究”吗?
近期,腾讯混元数字人团队联合清华大学,卡内基梅隆大学等13家机构,发布了首个系统性梳理 Deep Research 方向的综述论文。 该工作系统整理并分析了 500 余篇相关研究,全面回顾了 AI Agent 在开放式任务场景下的发展脉络与关键挑战。
2025-12-30 11:26:39
767
原创 架构解析: 别把 Agent Skills 当“工具函数”,它是一套“能力系统”
摘要: 本文探讨了大语言模型(LLM)中Agent Skills的核心作用与架构设计。Agent Skills作为连接LLM通用认知能力与工程化落地的关键组件,需包含语义层(定义意图与边界)、执行层(安全防御与协议转换)和感知层(反馈可理解性)。安全机制上,强调零信任模型(OBO身份传播)、沙箱隔离及人机协同熔断,确保系统在不确定性下的可靠性。Agent Skills的架构本质是重构权限、隔离与责任的现代执行模型,而非简单功能调用。
2025-12-30 11:21:32
806
原创 Transformer 到底在算什么?用矩阵视角看透 AI 的“思考”过程,一文讲清!
本文详细解析了Transformer模型的编码器(Encoder)和解码器(Decoder)结构。编码器通过输入嵌入和位置编码处理文本,使用自注意力机制(Q、K、V矩阵)捕捉词间关系,并通过残差连接和前馈神经网络优化特征表示。解码器采用类似的流程,但增加了掩码注意力机制,确保预测时只关注已生成内容。文章还解释了多头注意力机制的优势,即通过多视角学习提升模型性能。最后指出AI大模型是当前技术风口,鼓励读者把握学习机会,并提供相关学习资源链接。全文系统性地介绍了Transformer的核心原理,为理解大语言模型
2025-12-30 11:08:01
635
原创 AgentEvolver:让智能体实现高效自我进化
摘要: AgentEvolver是一种创新的智能体自我进化框架,通过自我提问(自动生成任务)、自我导航(复用历史经验)和自我归因(精细化过程奖惩)三大机制,解决传统强化学习训练成本高、效率低的问题。该框架实现了数据飞轮自动化,将经验转化为可复用知识,并通过细粒度反馈提升学习效率。实验显示,其性能较传统方法提升27.8%,且样本效率显著优化。AgentEvolver不仅降低了人工干预需求,还推动了从“手动调参”到“自主进化”的范式转变,为AI大模型开发提供了高效、可扩展的解决方案。
2025-12-30 11:00:53
944
原创 RAG 检索分不清“李逵”和“李鬼”?手把手微调垂直领域 Rerank 模型,让干扰项归零!
摘要: Embedding模型在召回文档时,常因语义相似但内容无关的“干扰项”导致大模型错误回答。为解决该问题,可采用**Rerank模型(Cross-Encoder)**进行精细化排序,其通过全注意力机制实现Query与Document的深层交互,显著提升精度。微调Rerank需高质量数据,重点挖掘“硬负例”(表面相关但实际无关的文档),并结合硬件优化Batch Size、Epochs和学习率等参数。本文以政务领域为例,提供数据生成脚本与训练代码,助力模型精准匹配用户需求。
2025-12-26 23:20:44
585
原创 LLM 实战:Teacher-Student 知识蒸馏
摘要: 针对垂直领域部署大模型时,直接使用大参数量模型面临高成本和推理速度慢的问题。Teacher-Student模式通过利用大模型生成高质量数据训练小模型,实现“算力换智力”。该模式分为三步:教师生成数据、过滤清洗、学生微调。进阶方法包括思维链蒸馏和过程奖励蒸馏,显著提升小模型在复杂任务中的表现。以医疗诊断为例,通过构造详细推理Prompt和严格数据清洗,可使小模型在私有化部署中接近大模型效果,同时降低成本。
2025-12-26 23:06:55
650
原创 一文讲清:AI大模型基本功——手写MOE混合专家模型
摘要:MOE(混合专家系统)已成为大语言模型的核心架构,通过多个专家网络和门控机制实现高效任务处理。文章介绍了MOE的基本原理(专家网络+门控系统)及其优势:提升性能、降低计算消耗、增强扩展性。作者从基础MOE实现入手,逐步讲解到Sparse MoE(仅激活topK专家)的实现方法,并提供了PyTorch代码示例。最后指出AI人才缺口巨大,鼓励读者把握学习机会。
2025-12-26 22:57:42
759
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅