本文翻译转载自:How to Use Low-Code and No-Code Tools for Computer Vision
【深度学习:计算机视觉工具】如何使用低代码和无代码工具进行计算机视觉
低代码和无代码环境、平台和主动学习工具在计算机视觉中的使用正在增加。
直到最近,为计算机视觉部署软件和算法的唯一方法是通过开源应用程序或订阅专有工具(例如,软件即服务(SaaS)解决方案),例如Encord。
现在还有第三种选择:用于主动学习计算机视觉项目的低代码和无代码主动学习平台。你可以用零技术知识和专业知识,使用无代码解决方案来构建主动学习工具和应用程序。
低代码解决方案与此类似,但少量的编码知识和经验通常很有用。
本文比较和对比了无代码和低代码计算机视觉平台。我们来看看为什么企业和组织热衷于为计算机视觉项目部署无代码和低代码软件。
什么是无代码计算机视觉平台?
自大流行以来,无代码和低代码开发市场经历了更快的增长。2020 年,该市场价值超过 100 亿美元,预计 2028 年将达到 940 亿美元,复合年增长率 (CAGR) 为 31.6%。
当时,企业没有资源或预算来致力于软件开发项目。因此,最好的解决方案之一是让没有编码技能的团队构建网站、软件和应用程序,而实现这一目标的最佳方法是使用无代码和低代码开发平台。
无代码和低代码解决方案已经在多个领域流行起来。然而,鉴于大流行给组织带来的时间和资源限制,有必要寻找许多人以前不会考虑的解决方案。幸运的是,低代码/无代码软件市场已经很活跃,市场上已经有数千种产品和解决方案。其中许多可以改编并用于计算机视觉项目。
对于计算机视觉 (CV) 和机器学习 (ML) 项目,使用无代码工具开发的软件意味着没有编码经验的人可以设计和部署它们。这样做有很多好处,我们很快就会介绍。
无代码与低代码
无代码和低代码软件和开发平台非常相似。
出于实际目的,唯一显着的区别是低代码解决方案需要一些编码知识。而无代码通常是拖放界面。与无代码网站建设者不同,非技术人员可以简单地选择他们想要的功能并将它们移动到适当的位置。
为计算机视觉项目构建应用程序的组织和团队可以使用这些无代码和低代码开发平台来加速 AI(人工智能)模型的训练和部署。这两种类型的解决方案都缩短了新应用程序的上市时间,并使机器学习和数据运营团队更容易更快地开始训练计算机视觉模型。
加速 AI 模型训练和部署的优势
训练和部署 AI 模型涉及多个阶段,包括基于图像或视频的数据标注工作。
根据您所在的行业或特定用例 ⏤ 医疗保健、零售、航空航天、国防等 ⏤ 您可能无法为该项目找到合适的工具。构建自己的可能会更快;但是,您不想花费 9 到 12 个月(或更长时间)和 6 位数来实现这一目标。
一个更明智、更经济、更省时的解决方案是使用低代码或无代码开发平台来加速人工智能模型的训练和开发。
以下是您可能希望在下一个计算机视觉项目中使用低代码或无代码平台的五个原因:
适用于团队的协作、可访问工具
通常,低代码/无代码工具易于使用,非技术团队更容易访问。当非技术人员参与计算机视觉项目(例如医疗保健部门的运营、营销、销售或医疗专业人员)时,使他们更具协作性。
由于这些解决方案中通常具有预先构建的 AI 模型,因此在将低代码/无代码工具与更高级的 CV 模型集成之前,许多人已经可以执行基本任务。
加快上市时间
对于任何计算机视觉项目,当需要在数据集、模型开发或主动学习平台中进行定制编码时,上市时间就会缩短。当您使用低代码/无代码替代方案时,上市时间会加快。
造成这种情况的原因之一是预先构建的 AI 模型和现成的数据集模板。您可能需要为您的项目和用例进行一些自定义,但在使用低代码/无代码工具时,这样做会更容易。
成本更低,结果更好
由于实施和部署计算机视觉项目涉及时间和成本,因此您可以采取任何措施来降低成本和改善结果,都是值得进行的投资。当然,开发人员和数据科学工程师对于低代码/无代码工具不是必需的,因此这种方法将节省时间和金钱。
可以自动执行的功能越多,训练和部署主动学习计算机视觉模型的速度就越快。低代码和无代码开发平台使那些管理计算机视觉项目的人员更容易加速和自动化项目工作流程的众多手动方面。
更轻松的诊断和调试
正如我们在上一篇文章中提到的,“调试深度学习模型可能是一项复杂且具有挑战性的任务。
调试计算机视觉模型非常具有挑战性。“为模型选择的神经网络越先进,它可能遇到的问题就越复杂,”这使得调试变得令人头疼。
使用低代码/无代码工具,调试模型或基于 AI 的模型运行的软件会更容易一些,因为不需要扫描数千行代码。当某些东西不起作用时,可以更轻松地快速识别、诊断和调试模型。