Josephus Problem的详细算法及其Python, Java语言的实现

  笔者昨天看电视,偶尔看到一集讲述古罗马人与犹太人的战争——马萨达战争,深为震撼,有兴趣的同学可以移步:http://finance.ifeng.com/a/20170627/15491157_0.shtml .
  这不仅让笔者想起以前在学数据结构时碰到的Josephus问题:
  据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人找到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
  以前我们都是用链表的方法编程来解决这个问题的,这次笔者将会讲述两个不同的方法,一个是笔者自己的朴素想法,一个是数学方法。

  • 朴素方法
  • 数学方法

  首先我们先将Josephus问题描述出来,即: 共有N个人围成一圈,编号分别为1,2,…,N,从第一个人开始从1到m报数,报到m的人退出,如此循环下去,直至最后一个人。问最后一个人的最开始的编号是几?
  先是笔者的朴素想法。
  将N个人储存在列表(list)中,每次报到m的元素剔除,并记录下最后一个人报的数i,然后将缩短后的数组从i+1报数,如此循环下去,直至列表的长度为1,这样剩下来的元素就是我们要求的答案。
  这种想法虽然素朴,比较容易实现,但是时间复杂度为O(Nm).
  接着是数学方法。
  假设一开始的Josephus环编号为0,1,2,…,N-1.我们知道第一个人(编号一定是m%N-1) 出列之后,剩下的N-1个人组成了一个新的Josephus环(以编号为k=m%n的人开始):

k,k+1,k+2,......,n2,n1,0,1,2,...k2 k , k + 1 , k + 2 , . . . . . . , n − 2 , n − 1 , 0 , 1 , 2 , . . . k − 2

并且从k开始报0.
  现在我们把他们的编号做一下转换:
k>0k+1>1k+2>2...k2>n2k1>n1 k − − > 0 k + 1 − − > 1 k + 2 − − > 2 . . . k − 2 − − > n − 2 k − 1 − − > n − 1

变换后就成为了(N-1)个人报数的子问题,这启示我们可以用归纳法来解决这个问题。假如我们知道这个子问题的解为 x x ,原来问题的答案为x,则 x=(x+k)%n. x ′ = ( x + k ) % n . 因此,递推公式就有了!令 f(i) f ( i ) 表示 i i 个人玩游戏报m退出最后胜利者的编号,我们要求的结果是 f(N) f ( N ) ,其递推公式如下:

f(1)=0f(i)=(f(i1)+m)%i(i>1) f ( 1 ) = 0 f ( i ) = ( f ( i − 1 ) + m ) % i ( i > 1 )

  数学方法简单明了,计算效率高,但是推导比较困难。
  最后,我们给出以下两种方法的Python代码和朴素方法的Java代码,希望能给大家一点思考。
  完整的Python代码如下:

# -*- coding: utf-8 -*-

# This code is devoted to solve the Josephus Problem by Python.

# N: numper of people
# m: cycle number
def solve1(N, m):
    a = list(range(1, N+1)) # sequence

    end = 0 # the number of last man in sequence
    while len(a) > 1:
        b = []
        for i in a:
            if not (end+a.index(i)+1)%m:
                b.append(i)
                # print(i, end=' ') # print the order of removing
            if a.index(i) == len(a)-1: # last man of sequence
                end = (end+a.index(i)+1)%m

        # remove elements in b from a
        for i in b:
            a.remove(i)

    return a[0]

# solve the problem by math method
def solve2(N, m):
    return 0 if N == 1 else (solve2(N-1, m)+m)%N

# main function for execution
def main():
    N, m = 41, 3
    left1 = solve1(N, m)
    print('\nThe man left: %d' %left1)

    left2 = solve2(N, m)+1
    print('\nThe man left: %d' % left2)

main()

  完整的Java代码如下:

import java.util.ArrayList;

public class Josephus {

    public static void main(String[] args) {
        int N = 41;
        int m = 3;
        int left = solve(N, m);
        System.out.println("\nThe man left is "+left+".");

    }

    public static int solve(int N, int m) {
        ArrayList<Integer> a = new ArrayList<Integer>();
        int end = 0;

        for(int i=0; i < N; i++)
            a.add(i+1);

        while(a.size() > 1) {
            ArrayList<Integer> b = new ArrayList<Integer>();

            for(int i: a) {
                if ((end+a.indexOf(i)+1)%m == 0)
                    b.add(i);
                // System.out.print(i+"-->");

                if(a.indexOf(i) == a.size()-1)
                    end = (end+a.indexOf(i)+1)%m;       
            }

            for(Object i: b) {
                a.remove(i);
            }
        }

        return a.get(0);
    }

}

  本次分享到此结束,欢迎大家交流~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>