# PyFlann 使用方法

PyFlann 其实是 FLANNpython 接口，当前支持python2 和 python3。FLANN 的意思是Fast Library for Approximate Nearest Neighbors，也就是快速解决最近点搜类问题的库。

# 安装

pip安装

pip install pyflann

git clone https://github.com/primetang/pyflann.git
cd pyflann
[sudo] python setup.py install

# 使用

pyflann 包 提供了一个名为 FLANN 的类，来负责执行最近点搜索这个具体的操作。这个类包含如下的函数。

## def build_index(self, pts, **kwargs)

pts 是数据集，必须是 numpy2D 数组或 matrix，用 row优先方式存储。

**kwargs 是一组不定的参数，首先包含一个参数 algorithm ，然后根据 algorithm 参数的不同，后续的参数也是不同的，总共有如下几种情况。

flann = pyflann.FLANN()

# 初始化 dataset
params = flann.build_index(dataset, algorithm = 'linear')
params = flann.build_index(dataset, algorithm = 'kdtree', trees)
params = flann.build_index(dataset, algorithm = 'autotuned',
target_precision, build_weight, memory_weight, sample_fraction)
params = flann.build_index(dataset, algorithm = "means", branching,
iterations, centers_init, cb_index)
params = flann.build_index(dataset, algorithm = "composite", tress, branching,
iterations, centers_init, cb_index)

### linear

Linear 算法并没有创建内部index，它是采用了暴力法求解，线性查找，因此无其他参数，且速度非常慢。

params = flann.build_index(dataset, algorithm = 'linear')

### autotuned

- target precision - is a number between 0 and 1 specifying the percentage of the approximate nearest-neighbor searches that return the exact nearest- neighbor. Using a higher value for this parameter gives more accurate results, but the search takes longer. The optimum value usually depends on the application.

• build weight - speci es the importance of the index build time raported to the nearest-neighbor search time. In some applications it’s acceptable for the index build step to take a long time if the subsequent searches in the index can be performed very fast. In other applications it’s required that the index be build as fast as possible even if that leads to slightly longer search times. (Default value: 0.01)

• memory weight - is used to specify the tradeo between time (index build time and search time) and memory used by the index. A value less than 1 gives more importance to the time spent and a value greater than 1 gives more importance to the memory usage.

• sample fraction - is a number between 0 and 1 indicating what fraction of the dataset to use in the automatic parameter con guration algorithm. Running the algorithm on the full dataset gives the most accurate results, but for very large datasets can take longer than desired. In such case, using just a fraction of the data helps speeding up this algorithm, while still giving good approximations of the optimum parameters.


from pyflann import *
from numpy import *
from numpy.random import *

dataset = rand(10000, 128)
testset = rand(1000, 128)

flann = FLANN()
params = flann.build_index(dataset, algorithm="autotuned", target_precision=0.9, log_level = "info");
print params

result, dists = flann.nn_index(testset,5, checks=params["checks"]);

### kd tree

k-d tree，是一种分割k维数据空间的数据结构。主要应用于多维空间关键数据的搜索（如：范围搜索和最近邻搜索）。K-D树是二进制空间分割树的特殊的情况。

params = flann.build_index(dataset, algorithm = 'kdtree', trees=4)

### kmeans

Hierarchical k-means 算法。需要输入以下参数：

• branching - the branching factor to use for the hierarchical kmeans tree creation. While kdtree is always a binary tree, each node in the kmeans tree may have several branches depending on the value of this parameter.

• iterations - the maximum number of iterations to use in the kmeans clustering stage when building the kmeans tree. A value of -1 used here means that the kmeans clustering should be performed until convergence.

• centers_init - the algorithm to use for selecting the initial centers when performing a kmeans clustering step. The possible values are ‘random’ (picks the initial cluster centers randomly), ‘gonzales’ (picks the initial centers using the Gonzales algorithm) and ‘kmeanspp’ (picks the initial centers using the algorithm suggested in [AV07]). If this parameters is omitted, the default value is ‘random’.

• cb_index - this parameter (cluster boundary index) in uences the way exploration is performed in the hierarchical kmeans tree. When cb index is zero the next kmeans domain to be explored is choosen to be the one with the closest center. A value greater then zero also takes into account the size of the domain.

## def nn_index(self, qpts, num_neighbors = 1, **kwargs)

• qpts: 待查询的 testset，维度要与之前建立时使用的数据集一样。比如建立的数据集是 1000 x 3的矩阵，查询的数据集必须为 n x 3 的矩阵，否则无法进行查询。
• num_neighbors: 查询最近的几个点，根据这个值决定返回的数值。如果 testset 的为 1000 x 3 矩阵，查询最近的五个节点，则返回 1000 x 5的矩阵，如果查询最近的一个节点，则返回 1000 x 1 的数组。
• kwargs: checks=[“checks”]

## def nn(self, pts, qpts, num_neighbors = 1, **kwargs)

from pyflann import *
import numpy as np

dataset = np.array(
[[1., 1, 1, 2, 3],
[10, 10, 10, 3, 2],
[100, 100, 2, 30, 1]
])
testset = np.array(
[[1., 1, 1, 1, 1],
[90, 90, 10, 10, 1]
])
flann = FLANN()
result, dists = flann.nn(
dataset, testset, 2, algorithm="kmeans", branching=32, iterations=7, checks=16)
print result
print dists

## def set_distance_type(distance type, order = 0)

• type - the distance type to use. Possible values are: ‘euclidean’, ‘manhattan’, ‘minkowski’, ‘max dist’ (L infinity - distance type is not valid for kd-tree index type since it’s not dimensionwise additive), ‘hik’ (histogram intersection kernel), ‘hellinger’,’cs’ (chi-square) and ‘kl’ (Kullback-Leibler).

• order - only used if distance type is ‘minkowski’ and represents the order of the minkowski distance.

# Reference

06-14 1818

12-21 741

02-04 1万+

01-08 49万+

11-01 3540

03-10 910

03-09 2497

#### FLANN匹配算法

©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。