《编程之美》中的题目要求只使用两个附加变量。王晓东编著的《算法设计与实验题解》中要求只用到O(1)的辅助空间。其它地方两本书的要求相同,都是O(n)的时间复杂度。两本书中的解法总结起来就是三种方法:(1)循环换位算法(2)三次反转算法(3)排列循环算法。这三种算法在王晓东的著作中都有实现代码。第一种算法是最原始的算法。第二种算法比较巧妙,即使用VU=reverse(reverse(U)reserve(V)),写成数学形式就是:
。
于是使用三次反转也可实现。第三种方法与数学有较大关系,以下着重解释第三种方法,借此复习一下数学。
对于第三种方法,王晓东老师在著作中介绍了一条循环置换分解定理:对于给定数组A[0..N-1]向后循环换位N-K位运算,可分解为恰好gcd(K,N-K)个循环置换,且0,...,gcd(K,N-K)-1中的每个数恰属于一个循环置换。其中gcd(x,y)表示x和y的最大公因数。
我们从头开始分析这个问题,对于数组A[0..n-1],要将其向后循环移动k位元素。因为每个元素右移n位后又回到了原来的位置上,所以右移k位等于右移k mod n位。考虑每个元素右移k位后的最终位置,比如对于A[0],右移k位后在k mod n位置上,原来在k mod n位置上的元素右移k位后到了2*k mod n的位置上,把如此因为A[0]的移动而受到连环影响必须移动的位置列出来,就是下面这样一