数组循环移位问题

本文探讨了《编程之美》和《算法设计与实验题解》中关于数组循环移位的三种方法:循环换位、三次反转和排列循环。重点介绍了第三种方法,通过循环置换分解定理和群论知识,解释了如何实现O(n)时间复杂度的解决方案,并提供了相关代码实现。
摘要由CSDN通过智能技术生成

《编程之美》中的题目要求只使用两个附加变量。王晓东编著的《算法设计与实验题解》中要求只用到O(1)的辅助空间。其它地方两本书的要求相同,都是O(n)的时间复杂度。两本书中的解法总结起来就是三种方法:(1)循环换位算法(2)三次反转算法(3)排列循环算法。这三种算法在王晓东的著作中都有实现代码。第一种算法是最原始的算法。第二种算法比较巧妙,即使用VU=reverse(reverse(U)reserve(V)),写成数学形式就是:

于是使用三次反转也可实现。第三种方法与数学有较大关系,以下着重解释第三种方法,借此复习一下数学。

对于第三种方法,王晓东老师在著作中介绍了一条循环置换分解定理:对于给定数组A[0..N-1]向后循环换位N-K位运算,可分解为恰好gcd(K,N-K)个循环置换,且0,...,gcd(K,N-K)-1中的每个数恰属于一个循环置换。其中gcd(x,y)表示x和y的最大公因数。

我们从头开始分析这个问题,对于数组A[0..n-1],要将其向后循环移动k位元素。因为每个元素右移n位后又回到了原来的位置上,所以右移k位等于右移k mod n位。考虑每个元素右移k位后的最终位置,比如对于A[0],右移k位后在k mod n位置上,原来在k mod n位置上的元素右移k位后到了2*k mod n的位置上,把如此因为A[0]的移动而受到连环影响必须移动的位置列出来,就是下面这样一

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值