斐波那契数的博弈

原题两个玩家,一堆石头,假设多于100块,两人依次拿,最后拿光者赢,规则是:1. 第一个人不能一次拿光所有的;2. 第一次拿了之后, 每人每次最多只能拿对方前一次拿的数目的两倍。求先拿者必胜策略, 如果有的话。怎么证明必胜。
分析这是斐波那契博弈,当且仅当石头个数是斐波那契数的时候先手必败。
让我们用第二数学归纳法证明:
为了方便,我们将n记为f
首先当 i=2 时,因为不能全部去完,先手只能取1颗,显然必败,结论成立。
其次假设当 i<=k 时,结论成立。
则当 i=k+1 时,f = f[k]+f[k-1]。
则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。(一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为 f[k] < 2*f[k-1])
对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。
如果先手第一次取的石子数 y>=f[k-1]/3 ,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时 x=f[k-1]-y ,则 x<=2/3*f[k-1] 。
我们来比较一下 2/3f[k-1] 与 1/2f[k] 的大小。即 4f[k-1]与 3f[k] 的大小,对两值作差后不难得出,后者大。
所以我们得到,x<1/2*f[k] 。
即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。
即i=k+1时,结论依然成立。
那么,当n不是Fibonacci数的时候,情况又是怎样的呢?
这里需要借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。
关于这个定理的证明,感兴趣的同学可以在网上搜索相关资料,这里不再详述。
分解的时候,要取尽量大的Fibonacci数。
比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,
依此类推,最后分解成85=55+21+8+1。
则我们可以把n写成  n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)
我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap  + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆,且不能一次取完。
此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。
同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值