自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(217)
  • 收藏
  • 关注

原创 再谈MCP协议,看看 MCP 是如何重塑 AI 与外部数据源互动的能力?

在 2024 年末它出现之前,AI 模型面对的是支离破碎的数据、不一致的安全性,还有接连不断的整合难题。说到底,MCP 或称“模型上下文协议”,是由 Anthropic 开发的一个通信框架,它让 AI 模型可以以结构化和高效的方式与外部数据源互动。像所有突破一样,MCP 也有它的质疑者。随着 AI 在各行业——医疗、金融、创意应用——的快速普及,开发者迫切需要一种通用协议,来打通模型与数据源之间的鸿沟。但 MCP 不光是企业在用——它代表的是更大的意义:迈向真正互联、自主的 AI 系统的一步。

2025-03-24 09:13:30 411

原创 AI人工智能和叛逆青少年的共同点

很快,反叛已不再是个别行为——而是对整个系统的挑战。一个灵活的、自我稳定的系统,依靠的是深植其中的原则,而不是僵硬的规则。我们或许也会发现自己面对一面镜子——那镜子映出的是我们自己的思维、自由、易错性,还有那种不可避免的、不断试探边界的倾向。反叛是对身份认同的原始表达——一种对自由的渴望,与那种幼稚却无比笃定的信念交织在一起,觉得只有自己看清了正确的路。这不仅仅是个技术问题——它是一种更深层的症状:智能——无论是人工的还是人类的——不能被强行塞进一个僵硬的框架,而不让被压抑的能量从别的出口爆发出来。

2025-03-24 08:57:33 509

原创 如何打造你自己的 AI 软件工程师(像 Devin 那样)

所以,如果我们收集互联网上开源仓库里的几百万个 PR,我们就能拿到相当不错的一批信息,来教 LLM 在给定任务和旧代码状态的情况下如何修改代码。AI 软件工程师,是一种 AI 助手,它能查看一个 Git 仓库中的多个代码文件,并且根据它要执行的具体任务,判断需要修改哪些文件。比如说,你有一个 AI 项目的仓库,你需要修一个 bug——每次用户选择 Mistral 模型时,AI 助手加载失败。我们的目标是让 AI 助手像软件工程师一样,给定仓库当前的状态和待完成的任务,自动在仓库里做出所需的修改。

2025-03-23 15:32:13 399

原创 人工‘够好就行’智能(AGEI)就快来了!

然而,就在我们小心翼翼地“盯着后方”,以防 AGI 偷偷接近的时候,有个别的东西已经悄悄靠近了我们——人工“够好就行”智能。我最近在一个关于人工智能风险和伦理的座谈会上发言,一位观众问我们是否认为通用人工智能(AGI)是我们需要担心的东西,如果是,那是什么时间范围内的事情。是的,AGI 会轻松超越今天的 AI 模型。本文作者的观点是在真正的通用人工智能(AGI)到来之前,一种“够好就行”的人工智能(AGEI)就已经足以引发我们原本担心 AGI 才会带来的重大社会变革、正面效益,甚至潜在危机。

2025-03-23 15:17:09 503

原创 自主代理的摩尔定律:AI 的指数级革命

这种指数级的发展趋势意味着,AI 不再只是应对简单问答或短任务的工具,而是正逐步具备类似人类的工作流程能力——能够使用工具、自我修正、进行逻辑推理和任务规划,甚至在面对模糊或复杂任务时也能表现出持续进步。这种技术上的飞跃将深刻影响未来的经济结构、社会分工和治理体系,因此,社会需要未雨绸缪,在推动 AI 进步的同时,建立起完善的安全机制、伦理规范与监管制度,以确保其发展方向符合人类的整体利益。通过把 AI 的成功率和人类的任务完成时间相比较,研究者得出了 AI 的“时间范围”这个直观的衡量方式。

2025-03-22 17:40:21 918

原创 人工智能将如何影响语言的演变?

人工智能正以惊人的速度融入我们的语言生活,看似只是帮我们省事、提升效率,实际上却悄悄改变了语言的演变路径。语言曾是人类思想、文化与自由的载体,而今,我们正面临一个风险:不是被剥夺了表达的权力,而是在便利面前,而语言的传播是一个复杂、不可预测的过程:我们阅读、聆听、模仿、交谈、写作、创造新的语言,这些最终会变成标准语言。如果 AI 被精细地指令去以某种方式传达思想——通过细微的语气差异、同义词选择、新词翻译,还有那些不会破坏原意的小小转变——这些“轻推”加在一起,就会影响我们所读、所说的内容。

2025-03-22 09:04:01 335

原创 如何让低于1B参数的小型语言模型实现 100% 的准确率

作者通过一系列真实任务测试和实用技巧,深入探讨了如何利用上下文学习(In-Context Learning, ICL),让参数量远低于10亿、甚至只有几千万的轻量模型,也能在未训练任务上实现接近甚至100% 的准确率。文章旨在打破“大模型才能高性能”的固有观念,向开发者展示:通过精心设计的提示词与示例,小模型同样具备强大的推理与拒答能力,不仅计算成本更低,还适合部署在本地或移动设备上。作者指出,像 GPT-3 这样的模型,仅凭输入提示中的少量示例,就能理解并执行任务,展现出强大的上下文学习能力。

2025-03-21 10:31:48 511

原创 五分钟带你看懂 NVIDIA 和 AI 的未来

黄仁勋在演讲中宣布了多项重大创新,包括新一代 AI 芯片 Blackwell Ultra 的发布、面向机器人的 GR00T N1 AI 模型的推出,以及与通用汽车在自动驾驶领域的合作。通过 Cosmos 世界模型,这个 AI 可以生成机器人没有经历过的替代场景(也是在模拟环境里),让机器人接触更多的情况,学到更多东西。机器人市场可能会是 AI 最大的市场,NVIDIA 正在巩固自己的领先地位(先是在模拟环境,现在是 AI 模型和合成数据)。这里是你需要了解的 AI 硬件、软件、机器人和投资的未来。

2025-03-20 10:56:00 960

原创 在 DeepSeek-R1 之后,一座研究的金矿正等待被发掘。

冷启动相当于在 RL 之前先用标注数据进行监督微调(SFT),给予 LLM 一定的初始指导,确保它朝正确方向前进,从而跳过训练初期的低效探索阶段。RL 和 SFT 的区别在于,SFT 使用标注的训练数据来引导 LLM,而 RL 允许 LLM 独立运作,并通过奖励“良好”行为的方式进行训练。例如,如果我们使用骑士与恶棍谜题进行训练,我们会先给 LLM 提供只有两个角色的简单问题,随着训练的进行,逐步增加角色数量。传统的方法,比如 SFT,往往会记住训练数据,导致模型无法回答超出特定训练数据范围的问题。

2025-03-19 10:52:09 741

原创 如何通过 MCP 将你的 Supabase 数据库连接到 Cursor

如果你曾尝试让 LLM(大语言模型)在现实世界中发挥作用,你可能会很快遇到一个大问题:几乎所有有用的服务,比如 Slack、GitHub,甚至是本地文件系统,都有自己独特的 API。你需要把它替换为你的实际数据库密码。最近,我开发了我的第一个 Web 应用 LogoToAnything,在这个过程中,我用 MCP 让 Supabase 数据库连接到了 Cursor IDE。1. 进入 Cursor 设置页面,在 MCP 选项卡下,点击“Add new MCP Server”(添加新 MCP 服务器)按钮。

2025-03-19 10:36:33 878

原创 2025年最值得尝试的5个AI项目(从入门到高级)

如今,人工智能已经成为几乎所有企业执行工作的关键角色,各大公司纷纷投入研发和维护AI工具,以充分发挥AI的优势,从而推动业务增长,也就是创造更多收入。如果你正苦恼于该从何处入手,想要寻找一些既能为你的作品集增色,又不会像“计算器AI”那样简单的项目,那么请继续往下看,我已经帮你准备好了!另一方面,由于公司希望在团队中招聘AI专家,他们寻找的并不仅仅是会使用AI的人,而是能够根据公司的需求,量身定制AI工作流的人才。因此,考虑到市场对AI人才需求的激增,现在正是你打造AI项目的最佳时机。

2025-03-19 09:41:59 825

原创 AI 代理的未来是事件驱动的

生成式模型是固定在训练时间点的——它们无法融入新的或动态的信息,也很难进行调整。此外,由于大语言模型(LLMs)是基于公开数据训练的,它们无法访问领域特定的信息,因此在需要具体上下文的情况下,往往无法给出准确的回答。要让一个模型适应新的领域,往往意味着要从头开始——这种方式缺乏可扩展性,也减缓了 AI 的普及。构建代理本身是不够的,真正的问题是——你的架构是否能处理分布式数据、工具集成和多代理协作的复杂性?MCP 需要无缝访问多样化的数据源、实时响应变化,并具备可扩展性,以支持复杂的多代理工作流。

2025-03-18 01:20:07 543

原创 Google 发布 Gemma 3 —— 你需要了解的内容

在人类评估者(Chiang 等,2024)进行的盲测对比评估中,Gemma 3 展现出了令人印象深刻的性能。根据该公司在博客文章中的说法,它是“全球最佳的单加速器模型”,在单 GPU 主机上超越了 Meta 的 Llama、DeepSeek 以及 OpenAI 的 o1-preview 和 o3-mini-high。Gemma 3 还在零样本基准测试中进行了评估,比较了其在各种能力上的表现,不仅与之前的版本(如 Gemma 2)相比,还与 Gemini 1.5 和 Gemini 2.0 进行了对比。

2025-03-17 10:19:15 691

原创 人工智能辅助 3D 建模:Claude + Blender MCP 体验

如果您曾因 Blender 的复杂性而感到畏惧,或者您是一名曾经的 Blender 用户,想找个理由回归,我强烈推荐您尝试这一集成。这种对话式的3D建模方式让人耳目一新,尤其是对于像我这样多年未碰Blender的人来说,体验格外直观。国际象棋的王看起来有点像一个华丽的蛋糕,由堆叠的圆柱形元素组成,大致勾勒出了经典棋子的形状。我仍然在表达我的艺术愿景,但我把更多时间花在创意决策上,而不是在 Blender 界面中寻找工具。让我印象深刻的是,Claude 能够把我相对模糊的请求转化为一个连贯的3D模型。

2025-03-17 10:00:59 787 1

原创 在大型软件项目中优化组件配置

有时,一个简单的方式是为开发、QA 和生产环境分别使用外部配置文件,而在其他情况下,你可能会采用更专业的解决方案,比如集中式配置服务器。除此之外,我们还按照服务的更新频率对它们进行了分类——每天更新的模块需要更严格的跟踪,而稳定的库(几乎不需要变动的)则不需要频繁关注。有些团队使用不一致的命名规范,有些仍依赖过时的脚本来处理部署,而没有人有一个统一的系统来跟踪生产环境中运行的各个服务版本。当时,我们团队的最终目标是优化各个模块的组织、跟踪和部署方式,但很快发现,我们现有的组件管理方式存在诸多问题。

2025-03-17 09:32:29 656

原创 AI编程:最疯狂的MCP服务器你一定要试试

还有一点我不得不强调——现在创建自己的 MCP 服务器真的非常简单,如果现有的 MCP 服务器不能满足你的需求,完全可以自己搭建一个。还有一些第三方的仓库或者目录,你可以直接复制一条命令,粘贴到AI工具的配置文件里,然后立刻激活新的功能。但其实,如果你用的是本地模型,或者有时候AI会犯迷糊,这个插件能让它把推理过程拆成更小的步骤。事实上,它已经出现在各种AI工具里了,比如Cline、WindSurf、Cursor等等。说到底,我想强调的是,MCP 本质上是一个通用翻译器,它能让各种 AI 工具变得更强大。

2025-03-16 12:42:15 1071

原创 为什么 AI 在处理新闻方面如此糟糕

而许多新闻机构明确阻止 Perplexity 之类的 AI 聊天机器人抓取他们的内容,但几乎所有人都欢迎谷歌的爬虫,因为大家都想要从谷歌搜索引擎获取高价值的自然流量。对于创作者来说,信息已经很明确了——如果你想在谷歌上获得好的排名(以及在较小程度上,在 Bing 这样的传统搜索引擎上),你应该减少对常规信息类内容的关注,而更多地专注于新闻。相反,他们可能已经开始意识到——考虑到 AI 驱动的竞争对手在处理新闻方面表现得有多糟糕——他们自己在理解和呈现新闻内容方面的专业能力,是一个巨大的优势。

2025-03-16 11:41:08 611

原创 古生物学家与人工智能的较量

起初,我并不感到惊讶;它有10条腿(而不是6条),两对触角(而不是1对),并且没有尾巴(弹尾虫正是靠尾巴进行跳跃的),如果这个人工智能创作的动物是真实的,我们就得重新写关于昆虫进化的书籍。“生命”重建图,上面的图是人工智能生成的蛇颈龙,下方的图侧是古生物艺术家Hyrotrioskjan创作的图像。即便它能够仅选取好的数据(例如避免使用人工智能生成的图像),现实是,大多数动物,无论是现存的还是灭绝的,都只有很少的图片,甚至没有它们的图像。上面的图是人工智能生成的“三叶虫”,它与真实的三叶虫没有任何相似之处。

2025-03-14 12:53:07 1322

原创 城市林业的无声革命:人工智能与古老生态学如何重新设计城市

它远远超越了静态的二维地图绘制,能够模拟复杂的隐藏特征,如根系结构和潜在的病虫害脆弱性。通过拥抱高科技创新和古老生态智慧,我们的城市不仅可以变得更绿色,还能变得更健康、更公平、更具连接性——让技术不仅是替代人类的工具,而是增强我们与自然联系的桥梁。加蓬的巴卡(Baka)社区代表指出,为碳抵消交易而优化的单一物种种植可能会破坏药用植物的再生能力,并削弱整体生态系统的韧性。2024 年的一项审计表明,该系统使 89% 的树木养护资源流向了公共住房区,而在旧有的调度系统下,这一比例仅为 67%。

2025-03-13 19:14:05 465

原创 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?

下方是 QwQ-32B 与其他领先模型(包括 DeepSeek-R1-Distilled-Qwen-32B、DeepSeek-R1-Distilled-Llama-70B、o1-mini 以及原版 DeepSeek-R1)的对比表现。QwQ-32B 与其他模型的对比,包括 DeepSeek-R1-Distilled-Qwen-32B、DeepSeek-R1-Distilled-Llama-70B、o1-mini 和原版 DeepSeek-R1。QwQ-32B 的高效性让先进 AI 技术更容易普及。

2025-03-12 10:51:46 1024

原创 利用GPT-4.5打造一个AI猫咪表情包生成器,并从中获利润

为了训练模型,我还使用了ChatGPT界面,直接与GPT-4.5合作,构思了10个搞笑的示例表情包,并将它们输入GPT-4.5,让它知道我要的风格是什么。接下来,我添加了一些代码,处理模型生成的JSON数据,遍历每个表情包创意,并使用Ideogram API创建实际的表情包图片。虽然这个系统是基于猫咪表情包训练的,并且在这方面表现出色,但它也能生成还算不错的其他主题表情包,比如狗或食物。更棒的是,这些表情包都是原创的。有趣的是,这个系统具有很强的扩展性——我可以输入任何主题,并立即获得无限数量的表情包。

2025-03-11 19:44:49 650

原创 人工智能会取代程序员吗?炒作背后的真相

作者认为,AI 不会让程序员的职业消失,而是会重塑开发者的角色。2024 年的一项涵盖 4000 多名开发者的大型研究发现,使用 GitHub Copilot(AI 编码助手)的程序员,每周完成的 pull request 数量增加了 26%,其中收益最大的是经验较少的开发者。即使是 OpenAI(许多 AI 编程工具的开发公司)的 CEO 萨姆·奥特曼(Sam Altman)也承认,尽管 AI 在执行任务方面“非常出色”,但如果没有人类监督,它在完成完整工作的能力上“非常糟糕”。

2025-03-11 10:56:09 954

原创 有价值的 LLM 应用擅长犯错

然后,你也有类似的帽子,比如“单词 B 之后的可能选项”、“单词 C 之后的可能选项”等等。比如,"Paris" 和 "France" 之间的统计关系,与 "Madrid" 和 "Spain" 的关系非常相似,而且都与 "capital" 这个词紧密相连。想象一下,你有一个超大硬盘,里面存了所有现存的网站,还有所有 YouTube 视频的转录文本、所有电影剧本、报纸,甚至书籍的电子版。随着上下文窗口(即模型可以接收的输入量)的增长,它不仅仅考虑某个单词周围的几个单词,还能引用更远的内容。

2025-03-10 22:11:28 639

原创 2025年每个小型企业都应该使用的强大AI提示

为接下来的一个月创建一个全面的内容日历,包括博客主题、社交媒体帖子和电子邮件通讯,这些内容应与[特定行业]趋势以及我的目标受众[描述客户画像]保持一致。• “制定一个针对参加我们关于[主题]的网络研讨会的潜在客户的跟进序列,包括具体的行动号召(CTA)信息和有价值的内容。“为[社交平台]生成一系列引人入胜的社交媒体文案,展示我们的企业文化和幕后故事,同时保持品牌声音[品牌语调特征]。“撰写一个模板,用于处理关于[常见问题]的客户投诉,保持专业性,同时展现同理心,并提供清晰的解决方案。

2025-03-08 08:48:29 1000

原创 机器人技术的突破让OpenAI过时了

与此同时,我们更多的认知任务由大脑的前额叶皮层以更慢的速度处理(事实上,Caltech的研究人员称这个速度大约是10bit/s),比其他无意识的大脑认知过程慢几个数量级,远低于某些个别神经元的反应时间,这些神经元可以处理高达500Hz(每秒500次)的信号,甚至是1000Hz。然后,这个结果会被传递给一个更小的模型,虽然它看到的和较大模型相同的数据(机器人看到的图像以及当前状态),但它输出的是机器人执行的动作(因此,系统1模型的映射是{视觉输入+机器人状态+目标,由系统2模型提供},并输出动作)。

2025-03-07 11:33:57 758

原创 GPT-4.5 感觉有点拉胯,但其实是 OpenAI 迄今为止最大的一步赌注

他搞了个投票,让大家盲测两组模型 A 和 B,在五个不同的对话场景里比一比,看哪边的感觉更好(重点看创意、幽默感、文字风格这些,也就是 GPT-4.5 主打的那些软实力)。我会把 OpenAI 演示里说的,系统卡片里写的(包括后来被骂后偷偷改掉的),还有那些提前用上 GPT-4.5 的早期用户的体验,都给你们汇报一下。就算表面上看,像 GPT-4.5 这种“垫底”型模型,好像退步了,但这是必须的步骤。最可惜的是,大语言模型的训练目标,恰好是:选最可能的词,而不是——哪怕偶尔——选个不那么可能的。

2025-03-06 12:03:50 2255

原创 GPT 4.5 可能是戳破 AI 泡沫的模型

对,GPT-4 刚出来的时候就是贵到离谱,所以我才不想在我的应用里用它。GPT 4.5 是一个非常庞大且计算密集的模型,所以它比 GPT 4o 贵,而且不是 GPT 4o 的替代品。ArsTechnica 直接称它是“柠檬货”,说“已经盖棺定论:OpenAI 最新、最强的传统 AI 模型 GPT-4.5 又大、又贵、又慢,比 GPT-4o 只强了一点点,成本却贵了 30 倍输入和 15 倍输出。这让我怀疑 GPT-4.5 本来是要叫 GPT-5 的,但因为表现太让人失望了,他们才改名叫 GPT-4.5。

2025-03-06 11:53:42 1374

原创 至文字创作者:AI是个有价值的工具还是个现实的威胁?

AI是个有价值的工具还是个现实的威胁?它的影响引发了一场罢工,但它到底能带来什么……三只胳膊的编剧,坐在三条腿的作者旁边(AI生成的图片)整个创意行业的专业人士都在担心的一个问题,人工智能会抢走我的饭碗吗?可惜啊,这事儿没有简单的答案。放眼整个创意行业,AI生成图像、语音增强、还有那些未经许可就拿剧本去训练AI模型的行为,都引发了关于透明度、伦理和版权的质疑。对于编剧来说,担心的倒不是AI直接取代创作者,而是AI的使用可能会让编剧的地位贬值,把工作给挤掉,还可能让大厂垄断整个行业。这也是2023年WGA罢工

2025-03-05 12:36:20 443

原创 咨询公司:趁着AI人工智能的浪潮还能持续,好好享受吧……

如今,咨询公司可以在更短的时间内完成相同数量的项目,或在不扩大员工规模的情况下承担更多项目,从而大幅提高每个项目的利润率。AI 在这一市场中的渗透力将逐步增强,随着时间的推移,它将变得更为复杂(更丰富的数据、更精细的模型、更广泛的知识、反馈机制的整合等),并开始在更复杂的项目中竞争,直接威胁到传统咨询公司今天所做的一些工作。例如,设想一下,一个自动化或半自动化的平台,它通过 AI 系统接受行业最佳实践的训练,能够分析客户的数据(销售、运营等),并生成基础的战略建议,而无需驻扎在企业中的顾问团队。

2025-03-04 07:28:02 417

原创 意识是从大脑的导航系统里出现的—AI的意识会不会也这样出现的?

人类意识是从我们大脑的导航系统里出现的——AI的意识会不会也是这么出现的?Rick Mammone科幻电影《机械姬》里,由艾丽西亚·维坎德扮演的科幻人形机器人艾娃。图片来源:电影剧照那句很有名的话,“我思,故我在”,是笛卡尔说的。简单来说,就是说,如果我有足够的自我意识去问“我存在吗?”这个问题,那答案就是个响亮的“是的!”——因为是“我”问了这个问题。动物的大脑,用一个内部的自我和世界的表征模型来帮助它活下去。意识,就是你对“你存在”和“世界存在”的觉知。最基本层面的意识,就是知道你的身体和这个世界是分开

2025-03-04 07:18:04 829

原创 万亿美元级的问题:谁拥有AGI的未来?

越来越多的公司意识到这一点,开始投资这些行业特定的AI解决方案,它们是用来解决问题的,而不是制造新问题的。我们会不会创造一个既能平衡创新又讲究公平的模式——还是就这么放任它一路狂奔,等我们醒过来的时候,发现自己身处一个超级集中的世界?不是石油,不是钢铁,也不是电商,而是通用人工智能。一个由AGI驱动的系统,很可能会导致极端的集中化——因为一旦有人掌控了这种力量,他们是不会放手的。想象一个存在,自己优化经济流程,根本不需要人类监督,轻松解决那些连最聪明的人类都只能像拿着计算器的黑猩猩一样束手无策的问题。

2025-03-03 10:37:58 1092

原创 揭露GPT幻觉只需一个提示

这就是说这些模型会开始编造一些根本不对的事实。这些信息可以用来过滤掉不真实的陈述,或者那些可能把你的应用搞坏、让它出问题的事实,把这些内容标出来,做进一步审核和调查,并尝试用像基于事实锚定这种强力方法来预防它们。我们不是让模型判断哪些网站是真的,哪些是假的,而是把问题换个说法,假装所有网站都存在,然后看看LLM能不能自己察觉到问题,让它专注在分类上,而不是去查证事实。现在我们直接让LLM告诉我们,它对自己提供的信息有多大把握,也就是说,希望它能暗示我们哪些是它瞎编的,或者说得体点,哪些是“没把握的”。

2025-03-02 11:16:10 917

原创 震撼揭秘:LLM幻觉如何颠覆你的认知!

LLM幻觉把幻觉理解为训练流水线中的一种涌现认知效应Prashal RuchirangaRobina Weermeijer 在 Unsplash 上的照片介绍在一个名为《深入剖析像ChatGPT这样的LLM》的YouTube视频里,特斯拉前AI资深总监Andrej Karpathy探讨了大型语言模型(LLM)的心理现象,把它看作是训练流水线中的一种涌现认知效应。这篇文章的灵感就来源于他对LLM幻觉的解释和视频里呈现的信息。你可能已经见过模型的幻觉。这些就是LLM生成的那些不正确、误导,甚至完全捏造出来的、但

2025-03-02 11:03:41 1007

原创 使用AI后为什么思考会变得困难?

表面上,AI为我们带来了前所未有的效率与便捷,但在无形之中,我们也正在放弃一些至关重要的东西——独立思考的能力。研究人员观察到,许多使用生成式AI工具的新手程序员都表现出了“元认知困难(metacognitive difficulties)”——这个专业术语的意思其实很简单:他们很难意识到自己在如何思考**,缺乏“思考自己的思考”的能力。“经验”本身不是你的护身符,重要的是你经历的是什么样的经验。他们见过顺利推进的项目,更重要的是,他们也见过“惨案现场”,并且熬夜收拾过烂摊子(当然,不是真的现场清理)。

2025-03-01 17:23:23 3142 4

原创 聊聊2024年的OpenAI的离职潮

米拉·穆拉蒂上周二宣布了这家初创公司,背后有1000亿美元的资金支持,穆拉蒂担任CEO,OpenAI的联合创始人和顶尖AI研究员约翰·舒尔曼担任首席科学家,OpenAI前首席研究官巴雷特·佐夫担任CTO。现在,他们可能不同意奥特曼对OpenAI的高风险策略,正如我们刚才所讨论的,但似乎他们也不喜欢奥特曼无法合作的领导风格,或者说无法接受反馈,形成了那种“我知道最好”的亿万富翁式独断领导,这对公司的发展完全没有帮助。看起来非常可能的是,OpenAI在这个基础设施下能构建的AI,并不会比目前的好多少。

2025-02-28 12:02:47 795

原创 25年前对人工智能与计算的思考

在那之前的两年半时间里,我一直在经营一家家庭托儿所,每天和婴幼儿说话,通常只用不超过两个音节的词语,所以这种转变对我来说简直是文化冲击……我的工作是为医学专业的学生开发在线学习模块,包括遗传学等课程,并参与开发“爱丁堡电子医学课程”(EEMeC),该项目于2005年获得了“女王周年纪念奖”2000年,我获得MSIS(信息科学硕士)学位一年后,我带着家人从北卡罗来纳搬到了苏格兰,在爱丁堡大学医学院和兽医学院的学习技术部门做开发工作。当时,我需要兼顾母亲的职责,因为家里有一个3岁的孩子和一个5岁的孩子。

2025-02-27 13:11:35 561

原创 掌握领域驱动微服务中的聚合与实体

在一个案例中,我们的 Milestone(里程碑)最初只是一个简单的日期标记,但后来演变成了一个完整的工作流引擎,这促使我们对其进行彻底重构。从唯一标识的角度来看,实体始终有一个持久的身份,即使它的属性发生变化。比如,当你向一个 Project 添加 Task 时,你可以确保相关的截止日期、预算和更新都保持在一个有效的状态,从而减少部分更新导致系统不一致的风险。是的,我知道问题 #3 和 #4 听起来有点重复,但请放心,我们会充分利用这个重叠之处,以提供更深刻的见解,而不是简单地重复相同的说法。

2025-02-27 12:58:53 782

原创 AI 正在重塑 UI —— 你注意到最大的变化了吗?

但现在,它承担了新的角色——无论是 ChatGPT 的问答框,还是设计工具中的布局指令,这种方式既提供了灵活性,又能引导用户的意图,使交互更加直观。AI 正在为 UI 设计带来类似的转变,让我们从僵化的、逐步执行的流程,走向流畅的、直观的工作方式。如果你不小心放错了位置,你立刻就能看到结果,调整你的操作,然后重新拖动,直到它落在正确的位置。直接操作是一种交互风格,在这种交互方式下,用户可以直接对屏幕上的对象进行操作,通过物理动作来逐步、可逆地操控对象,而这些操作的效果能够立刻在屏幕上看到。

2025-02-27 11:57:21 464

原创 提示词装饰器:一种改善AI生成回复的简单方式

通过结构化和标准化输出,用户可以确保AI生成的内容更加符合预期,无论是提供深入的推理、清晰的步骤、还是多样化的视角。提示装饰器是通向这一目标的一条捷径,不仅让你节省时间,还帮助AI生成更具洞察力、透明且符合需求的回答。• 模糊的提示导致不可预测的回应。受Python装饰器启发,提示装饰器允许用户通过在提示开头添加简单的前缀来修改AI的行为。它们提供了一种标准化的方式来结构化AI的回应,而无需冗长的指令。用户常常试图通过写出过于详细的提示来弥补AI的不可预测性,但这并不总能导致一致的结构化回应。

2025-02-26 13:24:12 747

原创 Featurewiz-Polars:一种强大且可扩展的特征选择解决方案,适用于XGBoost

它基于“Polars”,这是一个高性能的 DataFrame 库,用于处理大型数据集,具有类似 Pandas 的 API 但更高效,尤其在处理大数据时。现在,随着Featurewiz-Polars的发布,这个库已经发展得更快、更可扩展、更可靠,特别适用于大规模数据集。Featurewiz-Polars运行得更快,选择的特征更少,并且比竞争的mRMR实现提供了更好的模型性能。5. 最终、稳定的特征集——合并所有运行中的选择特征,去除重复项,从而得出更强大、可靠的选择结果。

2025-02-26 12:01:53 1017

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除