引言:
晚上好,Java开发者们!在高并发的现代应用中,垃圾回收器(GC)是Java性能优化的重要环节。尤其在CMS(Concurrent Mark-Sweep)GC曾经担任主角的日子里,适当的调优和优化措施至关重要。本篇文章将通过三个实际案例,探讨如何在不同场景中优化CMS GC,为你揭示Java性能调优的秘密。vQingYunJiao,无论你是新手还是资深工程师,希望这篇文章能为你提供实践中的宝贵经验和指导,让你的应用如虎添翼!

正文:
案例一:电商网站
1. 问题描述
在电商网站的高并发场景下,CMS GC的停顿时间对用户体验产生了较大影响,尤其是在促销活动期间,系统负载急剧增加,导致GC停顿时间变长,页面响应延迟,用户流失严重。
2. 优化措施
1)调整堆内存大小:根据系统的实际负载和内存需求,适当增加堆内存的大小,以减少GC的频率。
2)设置合适的CMSInitiatingOccupancyFraction参数:通过监控系统的内存使用情况,调整CMSInitiatingOccupancyFraction参数,使其在内存占用达到一定比例时提前触发CMS GC,避免内存不足时才进行GC,从而减少GC停顿时间。
3)使用堆压缩功能:启用-XX:+UseCMSCompactAtFullCollection参数,定期执行Full GC并进行堆压缩,以减少内存碎片。
3. 实操示例
java -Xms4g -Xmx8g
-XX:+UseConcMarkSweepGC
-XX:CMSInitiatingOccupancyFraction=60
-XX:+UseCMSCompactAtFullCollection
-jar qingyunjiao-e-commerce-app.jar
4. 效果
经过优化后,GC停顿时间明显减少,页面响应速度得到提升,用户体验显著改善。
案例二:金融交易系统
1. 问题描述
金融交易系统对延迟非常敏感,CMS GC的高并发性虽然减少了停顿时间,但在并发标记和清除阶段占用了大量CPU资源,导致系统整体性能下降。
2. 优化措施
1)优化代码:检查并优化系统中的代码,减少对象的创建和内存分配,以降低GC的压力。
2)调整线程数量:根据系统的硬件资源和负载情况,合理调整应用线程和GC线程的数量,避免线程竞争导致的性能下降。
3)监控和调整参数:使用JConsole、VisualVM等工具实时监控GC性能,根据监控数据动态调整相关参数,如CMSInitiatingOccupancyFraction、-XX:ParallelGCThreads等,以达到最佳的性能。
3. 实操示例
java -Xms4g -Xmx4g
-XX:+UseConcMarkSweepGC
-XX:CMSInitiatingOccupancyFraction=70
-XX:ParallelGCThreads=4
-jar qingyunjiao-trading-system.jar
4. 效果
优化后,系统的CPU利用率得到优化,GC对系统性能的影响减小,交易响应时间更加稳定。
案例三:大数据处理平台
1. 问题描述
大数据处理平台处理的数据量巨大,内存使用频繁,CMS GC的内存碎片问题导致内存利用率降低,频繁触发GC。
2. 优化措施
1)增加堆内存:为了应对大数据处理的需求,增加堆内存的大小,以减少GC的频率。
2)调整CMSFullGCsBeforeCompaction参数:将CMSFullGCsBeforeCompaction参数设置为适当的值,例如5,使得在进行一定次数的Full GC后进行堆压缩,减少内存碎片。
3)分代处理数据:根据数据的特点和生命周期,合理划分内存区域,将生命周期较短的数据存储在新生代,生命周期较长的数据存储在老年代,以提高GC的效率。
3. 实操示例
java -Xms8g -Xmx16g
-XX:+UseConcMarkSweepGC
-XX:CMSFullGCsBeforeCompaction=5
-XX:NewSize=4g
-jar qingyunjiao-bigdata-platform.jar
4. 效果
通过优化,内存碎片问题得到缓解,GC频率降低,系统的稳定性和性能得到提升。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
相信大家在刚刚开始学习的过程中总会有写摸不着方向,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程等免费分享出来。
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以微信扫码领取!

大模型星球
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先有一个明确的学习路线,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(完整路线在公众号内领取)

大模型学习路线
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

大模型面试
**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

5053

被折叠的 条评论
为什么被折叠?



