朴素贝叶斯分类器(Naive Bayesian Classifier)及简单的算法实践(识别MNIST手写数字)

本文介绍了朴素贝叶斯分类器的基础,包括贝叶斯定理及其在机器学习中的应用。文章通过Python实现了一个简单的朴素贝叶斯分类器,用于识别MNIST手写数字数据集。讨论了最大后验估计和m-估计,并提供了数据预处理和算法应用的代码示例。
摘要由CSDN通过智能技术生成

文章概述

朴素贝叶斯分类器是基于贝叶斯定理所实现的一种对于数据分类的算法,本文章将先对贝叶斯定理和对于机器学习(数据分类)上的作用进行简单介绍,然后通过代码(python)实现朴素贝叶斯分类器识别MNIST数据集的手写数字。


贝叶斯定理

P(h | x) = \frac{P(x|h)P(h)}{P(x)}

在机器学习中,x 通常为数据(feature),h为数据预测的模型(label)。

对于贝叶斯定理每一项的解释:

        P(h): 先验概率,在观测具体数据前预测某种数据标签(label)的概率。

        P(x|h): 似然值,在预测h下数据的概率。

        P(x)=\sum_{h}^{}P(x|h)P(h): 数据出现的概率。

        P(h|x): 后验概率,在观测到数据后预测某种数据标签(label)的概率。

贝叶斯分类器的目标:

挑出能最大化后验概率的数据标签,通俗点解释就是贝叶斯分类器看过了训练是的数据特征(feature)和对应的数据标签(label),对于给出的一组数据特征,贝叶斯分类器可以通过概率计算(基于贝叶斯定理),找出最可能符合的数据标签,也就是能最大化后验概率的标签。

最大后验估计(Maximun A Posteriori)

h_{MAP} = \mathop{\arg\max}\limits_{h\in H}P(h|x) = \mathop{\arg\max}\limits_{h\in H}\frac{P(x|h)P(h)}{P(x)} = \mathop{\arg\max}\limits_{h\in H}P(x|h)P(h)

P(x) 独立于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值