文章概述
朴素贝叶斯分类器是基于贝叶斯定理所实现的一种对于数据分类的算法,本文章将先对贝叶斯定理和对于机器学习(数据分类)上的作用进行简单介绍,然后通过代码(python)实现朴素贝叶斯分类器识别MNIST数据集的手写数字。
贝叶斯定理
在机器学习中, 通常为数据(feature),为数据预测的模型(label)。
对于贝叶斯定理每一项的解释:
: 先验概率,在观测具体数据前预测某种数据标签(label)的概率。
: 似然值,在预测h下数据的概率。
: 数据出现的概率。
: 后验概率,在观测到数据后预测某种数据标签(label)的概率。
贝叶斯分类器的目标:
挑出能最大化后验概率的数据标签,通俗点解释就是贝叶斯分类器看过了训练是的数据特征(feature)和对应的数据标签(label),对于给出的一组数据特征,贝叶斯分类器可以通过概率计算(基于贝叶斯定理),找出最可能符合的数据标签,也就是能最大化后验概率的标签。
最大后验估计(Maximun A Posteriori)
独立于