【转载】ROI-Align 原理理解 ---- 对背景问题的理解 -----之前一直在想一个问题:一个Label在原图上标记出一个包含目标的区域。这个框在特征提取后,大小被缩小到了什么程度?如果这个label框本身就不大,那么经过几层池化之后,是不是在最后的feature map上都没有一个位置,能够对应到这个区域?目标在特征提取过程中,由于这种深度结构导致目标被【腐蚀】或者说该目标的特征被淹没。这个问题更广义的...
论文阅读笔记-Segmentation-Aware Convolutional Networks Using Local Attention Masks 发表于ICCV2017的论文Segmentation-Aware Convolutional Networks Using Local Attention Masks用segmentation-aware的convolution代替CNN中传统的convolution,使得计算过程中神经元可以注意于和它属于同一类的区域。在semantic segmentation和optical flow es...
论文笔记:Residual Attention Network for Image Classification 论文地址:Residual Attention Network for Image Classification 本文地址:论文笔记:Residual Attention Network for Image Classification前言深度学习中的Attention,源自于人脑的注意力机制,当人的大脑接受到外部信息,如视觉信息、听觉信息时,往往不会对全部信息进行处理和理解,而只会将注...
深入理解Attention机制 【计算机视觉】深入理解Attention机制2018年03月16日 21:32:57 一的千分之一 阅读数:8525更多个人分类: 【计算机视觉】版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yideqianfenzhiyi/article/details/794228571. 什么是Attention机制?其实我没有找到at...
「见微知著」——细粒度图像分析进展综述 大家应该都会有这样的经历:逛街时看到路人的萌犬可爱至极,可仅知是“犬”殊不知其具体品种;初春踏青,见那姹紫嫣红丛中笑,却桃杏李傻傻分不清……实际上,类似的问题在实际生活中屡见不鲜。如此问题为何难?究其原因,是普通人未受过针对此类任务的专门训练。倘若踏青时有位资深植物学家相随,不要说桃杏李花,就连差别甚微的青青河边草想必都能分得清白。为了让普通人也能轻松达到“专家水平”,人工智能的研究者们希望借助计...
Fine-grained Image Recognition最近的一些进展(CVPR2017) Fine-grained Image Recognition最近的一些进展[6][7] Confusion[6] 作者都是流弊学校的。主要想法是交叉熵损失函数在训练有歧义或比较难以分类的图片时,会倾向于学习到图片的一些特有的特征来降低训练误差,对泛化可能没有帮助。作者提出了两种在交叉熵损失函数中增加confusion的办法,Pairwise Confusion(希望预测的logits差别不要太...
Bilinear CNN 《Bilinear CNNs for Fine-grained Visual Recognition》 Bilinear CNN 《Bilinear CNNs for Fine-grained Visual Recognition》深度学习成功的一个重要精髓,就是将原本分散的处理过程,如特征提取,模型训练等,整合进了一个完整的系统,进行端到端的整体优化训练。不过,在以上所有的工作中,我们所看到的都是将卷积网络当做一个特征提取器,并未从整体上进行考虑。最近,T.-Y. Lin、A.RoyChow...
训练loss不下降原因集合 rain loss与test loss结果分析train loss 不断下降,test loss不断下降,说明网络仍在学习; train loss 不断下降,test loss趋于不变,说明网络过拟合; train loss 趋于不变,test loss不断下降,说明数据集100%有问题; train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量...
LIDC-IDRI肺结节公开数据集Dicom和XML标注详解 LIDC-IDRI肺结节公开数据集Dicom和XML标注详解 字数统计: 4,209字 | 阅读时长: 21分 Medical Image1Dicom LIDC Xml文章首发于简书:LIDC-IDRI肺结节公开数据集Dicom和XML标注详解,现在搬运至博客。一、数据来源 数据集采用为 LIDC-IDRI (The Lung Image Database...
overfitting和regularization、dropout Overfitting 1.过度拟合(从知乎上看到的) (1)对于机器来说,在使用学习算法学习数据的特征的时候,样本数据的特征可以分为局部特征和全局特征,全局特征就是任何你想学习的那个概念所对应的数据都具备的特征,而局部特征则是你用来训练机器的样本里头的数据专有的特征. (2)在学习算法的作用下,机器在学习过程中是无法区别局部特征和全局特征的,于是机器在完成学习后,除了学习到了...
U-Net论文详解 U-Net:生物医学图像分割的卷积神经网络U-net 是基于FCN的一个语义分割网络,适合用来做医学图像的分割。摘要有许多成功利用大量带标注训练数据的神经网络。在这篇论文里,我们提出一个网络和训练策略,更有效的利用了数据增强来使用可获得的带标注数据。这个算法包括一个收缩路径来捕捉语义和一个扩展路径来精准定位。这个网络可以端到端训练非常少的图片,但是在ISBI(电子显微镜的细胞图像分割)挑战...
Install itksnap and mipav Install itksnapInstalling itksnap package on Ubuntu 14.04 (Trusty Tahr) is as easy as running the following command on terminal:sudo apt-get updatesudo apt-get install itksnap安装完成后在桌面执行sudo ...
Ubuntu apt-get彻底卸载软件包 如果你关注搜索到这篇文章,那么我可以合理怀疑你被apt-get的几个卸载命令有点搞晕了。apt-get的卸载相关的命令有remove/purge/autoremove/clean/autoclean等。具体来说:apt-get purge / apt-get --purge remove 删除已安装包(不保留配置文件)。 如软件包a,依赖软件包b,则执行该命令会删除a,而且不保留配置文...
weighted_cross_entropy_with_logits tf.nn.weighted_cross_entropy_with_logits tf.nn.weighted_cross_entropy_with_logits( targets, logits, pos_weight, name=None)Defined in tensorflow/python/ops/nn_impl.py.See the...
Multiclass Classification One-vs-all 、Multiclass Classification One-vs-all如何使用逻辑回归 (logistic regression) 来解决多类别分类问题,具体来说,我想通过一个叫做"一对多" (one-vs-all) 的分类算法?什么是多类别分类问题?下面就是多类别分类器的基本思想:(其实一句话总结,还是将复杂问题化简为基础问题,将多类别分类问题转化为多个二值分类问题,然后可以求解出多...
在用pip安装时候遇到Cannot uninstall ****,It is a distutils installed project and thus we cannot accurate的处理 则可以采用这个命令,即可解决:sudo pip install tensorflow --ignore-installed ***
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) CVPR 2017上,清华大学的Zhuang Liu、康奈尔大学的Gao Huang和Kilian Q.Weinberger,以及Facebook研究员Laurens van der Maaten 所作论文Densely Connected Convolutional Networks当选 ,与苹果的首篇公开论文Learning From Simulated and Unsupervised Im...
解决多标签分类问题(包括案例研究) 由于某些原因,回归和分类问题总会引起机器学习领域的大部分关注。多标签分类在数据科学中是一个比较令人头疼的问题。在这篇文章中,我将给你一个直观的解释,说明什么是多标签分类,以及如何解决这个问题。1.多标签分类是什么?让我们来看看下面的图片。如果我问你这幅图中有一栋房子,你会怎样回答? 选项为“Yes”或“No”。或者这样问,所有的东西(或标签)与这幅图有什么关系?在这些类型的问题中,我们有一组目标变...
自己适用的Ubuntu装机流程 之前用过直接安装cuda,通过cuda自带的显卡驱动装显卡驱动,但是这样需要靠运气,会常常遇到显卡驱动装不上的情况,这个问题在于cuda带的驱动有时候比较老,需要自动装别的版本的驱动,cuda8.0带的驱动是375,不适合我的显卡,但是cuda没事,因为它本身就是一个动态库,所以还是老老实实地第一步装显卡,第二步装cuda。提示一下:显卡驱动安装完毕后,最好备份在download文件夹一份,以防止...