函数在一点处连续

在一点处连续

在前面 “连续导论” 的内容说过如果一个函数是连续的,这到底意味着这个函数在图像层面可以一笔画出该函数的图像,这对于像 y = 2 x y=2x y=2x y = x 2 y=x^2 y=x2 这样的函数来说没有问题,因为整个图像在一块,一笔就能画出,但对于像 y = 1 x y=\frac{1}{x} y=x1 这样的反比例函数,这就有一点儿不公平了由于 x → 0 x \rightarrow 0 x0 时在 x = 0 x=0 x=0 处有一条垂直渐近线,以至于图像被分割为两部分。所以对于 y = 2 x y=2x y=2x y = x 2 y=x^2 y=x2 处处连续,而 y = 1 x y=\frac{1}{x} y=x1 则在 x = 0 x=0 x=0 处不连续(因为函数的定义域实际上要求 x ≠ 0 x\neq 0 x=0),所以一般情况下除了分割点 x = 0 x=0 x=0 之外其余处处连续。

1. 分析

判断一个函数在某一点处连不连续用图像法是挺好判断的,画出图像观察就行了,但是吧,如果要判断函数在无穷远处是不是连续用图像法总归不好画,所以在数学上一个函数连续不连续总归还是要能计算出来比较方便。

想象一下我们以一个函数 f f f 和在 x x x 轴上其定义域中的点 a a a 开始(要在函数的定义域内选一个点,如果选的一个点不在函数的定义域内,那就不能说这个点是函数上的一个点)。当我们画 y = f ( x ) y=f(x) y=f(x) 的图像时,想要在通过图像上的点 ( a , f ( a ) ) (a, f(a)) (a,f(a)) 时不提起笔。如果在其他地方必须提起笔的话, 那也不要紧,只要在 ( a , f ( a ) ) (a, f(a)) (a,f(a)) 的附近不提起笔就行了(因为这里只要求函数在某一点处连续),这意味着,我们想要一连串点 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 变得越来越接近 (事实上是任意地接近) 于点 ( a , f ( a ) ) (a, f(a)) (a,f(a)),换句话说,当 x → a x \rightarrow a xa 时, 需要 f ( x ) → f ( a ) f(x) \rightarrow f(a) f(x)f(a)。没错,我们这里面对的是极限问题。

下面代入想象的情境用更通俗的语言再来解释这一段话,并得出使用极限的表示方式,这样可以更清楚的知道极限在连续分析中的作用。

2. 理解

函数在某一点处连续用通俗的方式如何理解?例如有一连串的点越来越接近于某一个点,有多接近呢?无限的接近,足够的接近(在现实世界最小细分尺度受限于有限的空间,所以在一段的有限距离下是不能无限切割出无数等分的,但是在数学上没有这个限制,可以将一段坐标轴切割成无数等分,两个数之间可以再细分出无数个细分小数值,那这个接近程度就是这无数等分中两个相邻等分的距离,所以说非常接近)由于无限的接近这个点,那么这一连串点的值应该也是越来越接近这某个点的值的,无论是从左边还是右边越来越接近,这些点的值都是越来越接近这某个点的,那么从函数图像上来看就是图像在这一点上是非常光滑的,这就是函数在某一点处连续的直观效果,那么这个描述可以使用极限进行描述的。

如果  lim ⁡ x → a f ( x ) = f ( a ) ,   函数  f  在点  x = a  处连续 如果 \ \lim_{x \rightarrow a} f(x)=f(a), \ \ 函数 \ f \ 在点 \ x=a \ 处连续 如果 xalimf(x)=f(a),  函数 f 在点 x=a 处连续

为了让前面的等式有意义,等号两边必须都是有定义的。如果极限不存在,那
f f f 在点 x = a x=a x=a 处不连续,而如果 f ( a ) f(a) f(a) 不存在,那函数上甚至都没有一个点 ( a , f ( a ) ) (a, f(a)) (a,f(a)) 可以让你通过。

3. 定义

有了通俗描述的理解,现在可以知道连续问题的本质是 “极限的计算”,计算某一点邻域的极限和该点的函数值是否相同。同时在连续性方面函数的定义域也十分重要,必须去考量函数的定义域,要求函数在某一点上是有定义的。

下面呢我们可以结合极限,结合函数定义域来给出函数连续性更精简,更精确一些的描述,并明确地要求以下三条成立:

(1) 双侧极限 lim ⁡ x → a f ( x ) \lim_{x \rightarrow a} f(x) limxaf(x) 存在,即左极限 x → a − x \rightarrow a^- xa 和右极限 x → a + x \rightarrow a^+ xa+ 相等(并且是有限的)。
(2) 函数在点 x = a x=a x=a 处有定义,即 f ( a ) f(a) f(a) 存在(并且是有限的)。
(3) 以上两个量相等, 即 lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \rightarrow a} f(x)=f(a) limxaf(x)=f(a)

4. 实例

知道了函数连续性的定义,现在将连续性的定义代入到这几张图来中,分析一下图中函数的连续性。这四张图是非常经典的,观察图像可以试着想象并回顾函数连续性的判断原理,有助于理解记忆函数连续性相关的知识点。

请添加图片描述

(1) 在标号为 1 的图中,在 x = a x=a x=a 处的左极限和右极限不相等,则双侧极限不存在,所以函数在点 x = a x=a x=a 处不连续。

(2) 在标号为 2 的图中,左极限和右极限都存在且是有限的,并且左右极限相等, 故双侧极限存在,但函数在点 x = a x=a x=a 处无定义,因此函数在点 x = a x=a x=a 处不连续。

(3) 在标号为 3 的图中, 双侧极限也存在, 函数在点 x = a x=a x=a 处有定义,但极限值和函数值不相等,再一次地,函数在点 x = a x=a x=a 处一次不连续。

(4) 在标号为 4 的图中,由于双侧极限在点 x = a x=a x=a 处存在, f ( a ) f(a) f(a) 存在,并且极限值和函数值相等,因此函数的确在点 x = a x=a x=a 处连续。顺便说一下,前三个图中的函数在点 x = a x=a x=a 处有一个不连续点。

### 回答1: 函数连续和极限是密切相关的概念。 首先,如果一个函数在某一点的极限存在,那么这个点可以是函数连续点。也就是说,函数在该点连续当且仅当其在该点的左右极限存在且相等。 其次,连续函数的极限和函数的取值有关。具体来说,如果一个函数在某一点连续,那么在该点的极限就等于该点的函数值。这个性质称为连续函数的极限定理。 因此,函数连续和极限都是研究函数局部性质的重要工具,它们可以帮助我们研究函数在某一点的行为,进而揭示函数的整体性质。 ### 回答2: 函数连续和极限之间有着密切的联系。 连续是指在某个区间上函数不断接近某个特定值的性质。而极限则是对于函数在某一点或在无穷远的变化趋势进行研究的工具。 具体来说,函数在某一点连续性可以通过极限的存在与否来判断。如果函数在某一点的极限存在且等于该点的函数值,那么函数在该点是连续的。反之,如果函数在某一点的极限不存在或结果不等于函数值,那么函数在该点是不连续的。 此外,通过研究函数在无穷远的极限,我们可以进一步了解函数连续性。当函数在无穷远的极限存在时,我们可以说函数在无穷远连续的。这意味着函数的变化不会无限制地波动,而是逐渐趋于一个稳定的值。 综上所述,函数连续性与极限的存在与否密切相关。通过研究函数在某一点的极限和函数在无穷远的极限,我们可以判断函数连续性,并更好地理解函数的变化趋势。 ### 回答3: 函数连续和极限之间存在着紧密的联系。 首先,连续性是极限的重要性质之一。如果一个函数在某一点的左极限和右极限存在且相等,并且与函数在该点的函数值相等,那么我们称这个函数在该点是连续的。也就是说,连续性是函数在每个点的极限存在性和极限与函数值的一致性的综合体现。连续函数在定义域的每一点都具有这种性质。而极限则描述了函数在趋近某一特定点或者某一趋势时的行为。 其次,函数的极限可以帮助我们研究连续性。通过研究函数在某一点的极限,我们可以判断函数在该点是否连续。如果一个函数在某一点的极限存在且与函数在该点的函数值相等,那么该函数在该点是连续的。因此,通过计算极限来确定函数在某一点连续性是常见的数学问题之一。 此外,极限还可以帮助我们研究函数的性质。通过计算函数在某一点的极限,我们可以了解函数在该点的变化趋势、波动程度等。特别是函数在无穷远的极限,可以用来分析函数在无穷尽头的行为和趋势。例如,当函数在无穷远趋近于某一常数时,我们可以说这个函数具有水平渐近线。这些性质都可以通过计算函数的极限来进行推导和证明。 综上所述,函数连续和极限具有紧密的联系。函数连续性是函数在每个点的极限存在性和极限与函数值的一致性的综合体现。通过研究函数的极限,我们可以判断函数连续性,并进一步分析函数的性质和行为。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值