Math
文章平均质量分 91
微积分,线性代数,概率论
zhbi98
学习编程并不是一件轻而易举的事情,是需要时间的,在快时代背景下,我们其实更应该保持耐心,多给自己一点时间,
罗马不是一日建成的,沉住气做最优
展开
-
函数在区间内连续性
我们已经知道函数在一个单点上连续的定义了,现在来把该定义扩展一下,如果函数在区间ab(a, b)ab上的每一点处都连续,那么它在该区间上连续。注意到:区间是开区间,所以fff实际上没有必要在端点xax=axa或xbx=bxb上连续,例如,如果fx1xx0fx1/xx0,那么fff在区间0∞(0,\infty)0∞上连续,即使f0f(0)f0无定义,该函数在区间−∞0−∞0上也连续。但在区间−22(−2, 2)原创 2024-11-30 14:41:00 · 1649 阅读 · 0 评论 -
函数在一点处连续
有了通俗描述的理解,现在可以知道连续问题的本质是 “极限的计算”,计算某一点邻域的极限和该点的函数值是否相同。同时在连续性方面函数的定义域也十分重要,必须去考量函数的定义域,要求函数在某一点上是有定义的。下面呢我们可以结合极限,结合函数定义域来给出函数连续性更精简,更精确一些的描述,并明确地要求以下三条成立:(1) 双侧极限limx→afxlimx→afx存在,即左极限x→a−x→a−和右极限x→ax→a相等(并且是有限的)。原创 2024-10-26 21:14:44 · 1379 阅读 · 0 评论 -
函数连续性导论
一般而言,函数的图像不需要遵守太多的要求,只有一点比较特殊,函数图像它必须满足垂线检验,这并没有要求特别多。只要满足垂线检验图像可以散落四处:这里有一部分,那里有一条垂直渐近线,或者图像是随心所欲地在各处散落任意个不连续的点。不过连续听着好像要求函数要满足连续的话就必须在所有地方连续(就类似于上图一样,函数曲线在任何地方保持延绵不断),在无穷远处也能连续。连续的字面意思是一个接一个,连贯的,意思大概就是延绵不断的,所以对于函数连续的定义不用怀疑就是简单的字面意思,函数的图像是不是处处相互连接的,原创 2024-10-26 21:11:33 · 1053 阅读 · 0 评论 -
极限基本类型小结
在之前的文章中已经看过了极限的多种基本类型,下面展示一些各种基本类型的代表性的图像,通过观察下面的图像可以帮助我们回顾函数在趋近于某一点时函数值的行为(这也叫极限值),也生动的描述了各种极限的表现形式,所以这些图是很有用的,需要重点记忆。在右图中,左极限和右极限存在并相等,因此,双侧极限存在并等于左右极限值。时的双侧极限,见图 3-16,在左图中,左极限和右极限存在但不相。的行为是无关紧要的(也就是说,当讨论右极限时, 对于。时的左极限,见图 3-15,这时在。时的极限,见图 3-17。原创 2024-09-28 23:00:45 · 1024 阅读 · 0 评论 -
极限两边夹定理
两边夹定理 (又称作夹逼定理) 说的是,如果一个函数f被夹在函数g和函数h之间,当x→a时,这两个函数g和h都收敛于同一个极限L,那么当x→a时,f也收敛于极限L。原创 2024-07-29 11:51:59 · 1849 阅读 · 0 评论 -
在无穷处的极限
之前文章的例子都是在接近一点xax=axa时的函数行为,在函数趋近于∞\infty∞情况下的极限,重要的是要理解当xxx变得非常大时,一个函数的行为如何。用更简便的语言来描述就是:我们感兴趣的是,研究当变量xxx趋于∞\infty∞时函数的行为,并且想写出limx→∞fxLx→∞limfxL并以此表示,当xxx很大的时候,fxf(x)fx变得非常接近于值LLL,并保持这种接近的状态。另外,xxx也可以趋近于−∞。原创 2024-07-14 22:05:38 · 1604 阅读 · 0 评论 -
极限存在的条件
在左极限与又极限相关的内容中我们知道极限(也叫双侧极限)存在的充分必要条件是左右极限都存在且相等,否则极限不存在。所以这里要来详细的探讨一下在什么情况下函数会不存在极限。原创 2024-06-13 11:55:37 · 3231 阅读 · 0 评论 -
左极限与右极限
(1) 双侧极限在函数连续性判断方面具有重要的作用,需要重点记忆双侧极限和函数连续性的关系,后续会重点讲解。(2) 从本次的左右极限相关的内容也可以知道函数的定义域对极限具有一定的影响,后续会重点讲解。(3) 极限存在的充分必要条件是左极限和右极限都存在且相等,在分段函数方面尤其需要注意,很容易出现左极限和右极限不相等的情况。原创 2024-05-27 11:54:06 · 5495 阅读 · 0 评论 -
极限基本思想
在高等数学中极限是微积分的前置思想,没有极限的概念,那么微积分的理论将不复存在。极限也用于分析一个函数的连续性,可以说理解极限后理解函数的连续问题是轻而易举的事情。对于函数的连续性,不是什么高深的词汇就是字面意思,讲的就是这个函数的图像是否是持续不间断的,而间断则表示函数的图像存在断开的缺口那么函数就不是连续的状态了,所以极限必须花大量的时间去理解并掌握它。原创 2024-05-13 11:51:55 · 1617 阅读 · 0 评论 -
三角函数诱导公式
两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。两角和与差的公式是三角函数恒等变形的基础,其他三角函数公式都是在此公式基础上变形得到的。原创 2024-04-30 09:10:00 · 1212 阅读 · 0 评论 -
函数定义域和值域
定义域(domain of definition)指自变量xxx的取值范围,是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。定义一:设xxxyyy是两个变量,变量xxx的变化范围为DDD,如果对于每一个数x∈Dx \in Dx∈D,变量yyy遵照一定的法则总有确定的数值与之对应,则称yyy是xxx的函数,记作yfxy=f(x)yfxx∈Dx \in Dx∈Dx。原创 2024-04-29 20:12:03 · 4657 阅读 · 0 评论
分享