《剑指Offer》递归和循环—

题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

思路

首先我们考虑最简单的情况。如果只有1个台阶,那么显然只有一种跳法;如果是2级台阶,那么有2种跳法。
对于一个有n级台阶的楼梯来说,我们设跳法为 f(n) ,假如我们先跳1个台阶,则剩下有 n-1 个台阶,跳法为 f(n-1) 次,
假如我们先跳2个台阶,则剩下 n-2 阶,跳法为 f(n-2);

由此可以推出,对于一个n阶的楼梯,有以下这个跳台阶的公式:

这样递归的公式就出来的,马上就可以用递归的方法来解决。但是递归的方式占用栈的空间是按照递归深度的级数递增的,所以递归只能求级数比较少的情况。
代码

public int JumpFloor(int target) {
if (target <= 0 ){
return -1;
} else if (target == 1){
return 1;
} else if (target == 2) {
return 2;
} else {
return JumpFloor(target - 1) + JumpFloor(target - 2);
}
}

扩展

当跳台阶的选择多了呢?比如说 每次可以跳3个台阶;按照同样的方法分析,如下公式:

代码

//3
public int JumpFloor1(int target) {
if (target <= 0 ){
return -1;
} else if (target == 1){
return 1;
} else if (target == 2) {
return 2;
} else if (target == 3){
return 4;
} else {
return JumpFloor1(target - 1) + JumpFloor1(target - 2) + JumpFloor1(target -3);
}
}

变态跳台阶

延伸(变态跳台阶):可以跳 n 级?
代码

//n
public int JumpFloor2(int target) {
int m = 0, i; //跳法总数
if (target < 0) {
m = 0;
} else if (target == 0) {
m = 1;
} else {
for (i = target - 1; i >= 0; i–) {
m += JumpFloor2(i);
}
}
return m;
}

代码地址: https://github.com/zhisheng17/AlgorithmCode/blob/master/src/com/offer/recursion/JumpFloor.java

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值