题目
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路
首先我们考虑最简单的情况。如果只有1个台阶,那么显然只有一种跳法;如果是2级台阶,那么有2种跳法。
对于一个有n级台阶的楼梯来说,我们设跳法为 f(n) ,假如我们先跳1个台阶,则剩下有 n-1 个台阶,跳法为 f(n-1) 次,
假如我们先跳2个台阶,则剩下 n-2 阶,跳法为 f(n-2);
由此可以推出,对于一个n阶的楼梯,有以下这个跳台阶的公式:
这样递归的公式就出来的,马上就可以用递归的方法来解决。但是递归的方式占用栈的空间是按照递归深度的级数递增的,所以递归只能求级数比较少的情况。
代码
public int JumpFloor(int target) {
if (target <= 0 ){
return -1;
} else if (target == 1){
return 1;
} else if (target == 2) {
return 2;
} else {
return JumpFloor(target - 1) + JumpFloor(target - 2);
}
}
扩展
当跳台阶的选择多了呢?比如说 每次可以跳3个台阶;按照同样的方法分析,如下公式:
代码
//3
public int JumpFloor1(int target) {
if (target <= 0 ){
return -1;
} else if (target == 1){
return 1;
} else if (target == 2) {
return 2;
} else if (target == 3){
return 4;
} else {
return JumpFloor1(target - 1) + JumpFloor1(target - 2) + JumpFloor1(target -3);
}
}
变态跳台阶
延伸(变态跳台阶):可以跳 n 级?
代码
//n
public int JumpFloor2(int target) {
int m = 0, i; //跳法总数
if (target < 0) {
m = 0;
} else if (target == 0) {
m = 1;
} else {
for (i = target - 1; i >= 0; i–) {
m += JumpFloor2(i);
}
}
return m;
}
代码地址: https://github.com/zhisheng17/AlgorithmCode/blob/master/src/com/offer/recursion/JumpFloor.java