KM算法模板(HDU_2255)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jhgkjhg_ugtdk77/article/details/49523357

以下内容转自:http://cuitianyi.com/blog

求最大权二分匹配的KM算法

最大权二分匹配问题就是给二分图的每条边一个权值,选择若干不相交的边,得到的总权值最大。解决这个问题可以用KM算法。理解KM算法需要首先理解“可行顶标”的概念。可行顶标是指关于二分图两边的每个点的一个值lx[i]或ly[j],保证对于每条边w[i][j]都有lx[i]+ly[j]-w[i][j]>=0。如果所有满足lx[i]+ly[j]==w[i][j]的边组成的导出子图中存在一个完美匹配,那么这个完美匹配肯定就是原图中的最大权匹配。理由很简单:这个匹配的权值之和恰等于所有顶标的和,由于上面的那个不等式,另外的任何匹配方案的权值和都不会大于所有顶标的和。

但问题是,对于当前的顶标的导出子图并不一定存在完美匹配。这时,可以用某种方法对顶标进行调整。调整的方法是:根据最后一次不成功的寻找交错路的DFS,取所有i被访问到而j没被访问到的边(i,j)的lx[i]+ly[j]-w[i][j]的最小值d。将交错树中的所有左端点的顶标减小d,右端点的顶标增加d。经过这样的调整以后:原本在导出子图里面的边,两边的顶标都变了,不等式的等号仍然成立,仍然在导出子图里面;原本不在导出子图里面的边,它的左端点的顶标减小了,右端点的顶标没有变,而且由于d的定义,不等式仍然成立,所以他就可能进入了导出子图里。

初始时随便指定一个可行顶标,比如说lx[i]=max{w[i][j]|j是右边的点},ly[i]=0。然后对每个顶点进行类似Hungary算法的find过程,如果某次find没有成功,则按照这次find访问到的点对可行顶标进行上述调整。这样就可以逐步找到完美匹配了。

值得注意的一点是,按照上述d的定义去求d的话需要O(N^2)的时间,因为d需要被求O(N^2)次,这就成了算法的瓶颈。可以这样优化:设slack[j]表示右边的点j的所有不在导出子图的边对应的lx[i]+ly[j]-w[i][j]的最小值,在find过程中,若某条边不在导出子图中就用它对相应的slack值进行更新。然后求d只要用O(N)的时间找到slack中的最小值就可以了。

******而如果求最小权匹配的话,只要把边权值取相反数,求出最大匹配,然后再取相反数即可。


例:HDU_2255

Problem Description
传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子。
这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住的话,容易引起不安定因素),每家必须分配到一间房子且只能得到一间房子。
另一方面,村长和另外的村领导希望得到最大的效益,这样村里的机构才会有钱.由于老百姓都比较富裕,他们都能对每一间房子在他们的经济范围内出一定的价格,比如有3间房子,一家老百姓可以对第一间出10万,对第2间出2万,对第3间出20万.(当然是在他们的经济范围内).现在这个问题就是村领导怎样分配房子才能使收入最大.(村民即使有钱购买一间房子但不一定能买到,要看村领导分配的).
Input
输入数据包含多组测试用例,每组数据的第一行输入n,表示房子的数量(也是老百姓家的数量),接下来有n行,每行n个数表示第i个村名对第j间房出的价格(n<=300)。
Output
请对每组数据输出最大的收入值,每组的输出占一行。
Sample Input
2 100 10 15 23
Sample Output
123
Source
 
代码清单:
/*******************************************************************************
 *** problem ID  : HDU_2255.cpp
 *** create time : Sat Oct 31 00:32:24 2015
 *** author name : nndxy
 *** author blog : http://blog.csdn.net/jhgkjhg_ugtdk77
 *** author motto: never loose enthusiasm for life, life is to keep on fighting!
 *******************************************************************************/

#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <ctime>
#include <vector>
#include <cctype>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>

using namespace std;

#define end() return 0

const int maxn = 300 + 5;
const int INF = 0x7f7f7f7f;

int n, nx, ny, w[maxn][maxn];
int match[maxn], lx[maxn], ly[maxn], slack[maxn];
bool visx[maxn], visy[maxn];


bool dfs(int x){
	visx[x] = true;
	for(int y = 1; y <= ny; y++){
		if(visy[y]) continue;
		int t = lx[x] + ly[y] - w[x][y];
		if(t == 0){
			visy[y] = true;
			if(match[y] == -1 || dfs(match[y])){
				match[y] = x;
				return true;
			}
		}
		else if(slack[y] > t){ //不在相等子图中slack取最小的
			slack[y] = t;
		}
	}return false;
}

int KM(){
	nx = ny = n;
	memset(match, -1, sizeof(match));
	memset(ly, 0, sizeof(ly));
	for(int i = 1; i <= nx; i++){ //lx 初始化为与它关联边中最大的
		lx[i] = -INF;
		for(int j = 1; j <= ny; j++){
			if(w[i][j] > lx[i]) lx[i] = w[i][j];
		}
	}

	for(int x = 1; x <= nx; x++){
		for(int i = 1; i <= ny; i++){
			slack[i] = INF;
		}
		while(true){
			memset(visx, false, sizeof(visx));
			memset(visy, false, sizeof(visy));

			//若成功(找到了增广路),则该点增广完毕,下一个点进入增广
			if(dfs(x)) break;

			//若失败,则需要改变一些点的顶标,使得图中可行边的数量增加
			//(1)将所有在增广轨中的 X 方点的标号 全部减去一个常数 d ;
			//(2)将所有在增广轨中的 Y 方点的标号 全部加上一个常数 d ;
			int d = INF;
			for(int i = 1; i <= ny; i++){
				if(!visy[i] && d > slack[i]) d = slack[i];
			}
			for(int i = 1; i <= nx; i++){
				if(visx[i]) lx[i] -= d;
			}
			for(int i = 1; i <= ny; i++){
				if(visy[i]) ly[i] += d;
				else slack[i] -= d;
			}
		}
	}
	int res = 0;
	for(int i = 1; i <= ny; i++){
		if(match[i] > -1) res += w[match[i]][i];
	}
	return res;
}

void input(){
	for(int i = 1; i <= n; i++){
		for(int j = 1; j <= n; j++){
			scanf("%d", &w[i][j]);
		}
	}
}

void solve(){
	printf("%d\n", KM());
}

int main(){
	while(scanf("%d", &n) != EOF){
		input();
		solve();
	}   end();
}




阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页