Flask入门——简单应用

打开我们创建的项目在项目目录新建python源文件 叫做run或者项目的名字我们需要导入flask包给我们提供的核心的类我们发现没有找到,因为我们的flask安装在虚拟环境里的但是在默认情况下pycharm他所指代的默认环境不是虚拟环境而是我们全局的python环境在External Librar...

2018-05-16 02:31:20

阅读数:104

评论数:0

Flask入门——创建项目

在Windows上安装virtualenv有点麻烦,涉及到一些权限的问题,推荐使用pipenv我们需要安装pipenv首先搞清楚一个概念:pipenv是pipenv,虚拟环境是虚拟环境pipenv只是一个工具,我们需要用pipenv来创建虚拟环境我们创建的虚拟环境和项目的关系:虚拟环境和项目是绑定...

2018-05-16 01:48:44

阅读数:259

评论数:0

神经元

神经网络是一种人类由于受到生物神经细胞结构的启发而研究出的一种算法研究细胞体外部---树突上面的大的就是细胞体细胞体周围小支差就是树突细长的象尾巴一样的东西就是轴突不同细胞之间通过树突和突轴相互传递信息他们的接触点叫做突触所以信号由一个细胞的突轴,通过突触将信息传递给另一个细胞的树突人类由于神经细...

2018-04-01 23:47:02

阅读数:126

评论数:0

随机森林(未完成待定!)

Bagging:使用随机取样的方式包括在特征空间 随机取特征这样的方式来创建诸多的子模型来集成在一起这种方式就叫做Bagging我们使用了基础分类器Base Estimator:Decision Tree,就是基础的评估算法就是决策树我们集成学习就相当于集成了成百上千的决策树对于这样一个集成学习的...

2018-04-01 02:08:37

阅读数:18

评论数:0

集成学习

我们学习了很多机器学习算法,对应不同算法给出的结果不同,这种情况下我们听那个算法的结果呢?我们完全可以把多个算法集中起来,让不同的算法对同一个问题都进行运算,看看结果,最终少数服从多数生活中的集成学习:买东西找别人推荐,我们找很多人推荐,然后看他们投票,因为每一个人经历不同,视角不同,他们给出的决...

2018-04-01 02:03:51

阅读数:112

评论数:0

决策树

例子:假设有一个公司想要招聘机器学习算法工程师,他们招聘过程中很有可能采用这样一个流程如下这样的过程形成了树的结构这棵树的叶子节点的位置,其实就是我们最终做出的决策这个决策就是对于输入相当于应聘者的信息进行了分类这样的过程就是决策树有计算机领域的树结构的所有性质包括节点,根节点,包括叶子节点和深度...

2018-04-01 01:39:53

阅读数:45

评论数:0

支撑向量机SVM

支撑向量机Support Vector Machine我们使用支撑向量机既可以解决分类也可以解决回归我们先来讨论分类问题逻辑回归本质就是在这个二维平面找到决策边界我们分类算法就告诉我们如果在这个决策边界一边就属于一类否则就属于另一类对于一些数据存在这样一个问题,就是决策边界并不唯一决策边界不唯一通...

2018-04-01 01:23:48

阅读数:100

评论数:0

逻辑回归Logistic Regression

2017年竞赛网站进行统计下面是除了军事和安全的领域机器学习算法逻辑回归是使用最多的,比第二名决策树高出20多个百分点可见逻辑回归这种算法,虽然本身很简单,但是非常有用的很多时候对于机器学习算法,并不是越复杂越好,要根据实际使用场景来选择最合适的算法没有免费的午餐定理:并没有某一种算法比另一种算法...

2018-03-31 23:47:53

阅读数:20

评论数:0

模型泛化和岭回归(未完成待定)

模型正则化(Regularization):限制参数的大小我么使用多项式回归过拟合样本数据的例子我们生成的曲线非常弯曲陡峭,尤其是两边的时候对于这个曲线,相应的参数有一些系数非常大模型正则化就是希望限制系数的大小...

2018-03-31 21:28:27

阅读数:40

评论数:0

多项式回归

之前我们的线性回归法有个很大的限制,就是假设我们数据是成线性关系的我们实际场景中,有线性关系的情况可能是比较少的更多的数据之间他们具有的是非线性关系模型泛化对于这种模型我们也可以用线性回归来计算但是他有更加强的非线性关系我们用二次曲线来拟合效果更好我们的式子y=ax^2+bx+c如果我们将x2理解...

2018-03-31 21:17:21

阅读数:215

评论数:0

PCA

Principal Component Analysis主成分分析非监督学习算法作用主要用于数据降维通过降维,可以发现更便于人类理解的特征也可以进行:可视化,去燥二维平面特征1和特征2我们怎么降到1维?我们两个特征选一个吧另一个给扔了就可以了 同理对于y也一样我们已经有了两张降维方案哪个方案是更好...

2018-03-30 23:27:12

阅读数:23

评论数:0

梯度下降法

Gradient Descent 梯度下降法本身不是一个机器学习算法,既不能解决监督问题也不能解决非监督问题不能解决回归和分类问题是一种基于搜索的最优化方法作用:最小化一个损失函数另外,梯度上升法:最大化一个效用函数我们求解线性回归模型本质就是最小化损失函数我们很多时候机器学习模型求不到这个数学解...

2018-03-29 22:40:36

阅读数:20

评论数:0

线性回归算法

kNN算法主要用于解决分类问题,而线性回归算法主要用于解决回归问题思想非常简单,而且实现很容易许多更加强大的非线性模型的基础,无论是多项式回归,逻辑回归还是svm从某种程度上来讲都是线性回归算法的一个拓展最重要的是线性回归算法他的得到的时候非常好的可解释性的蕴含了机器学习中的很多思想,也就是因为如...

2018-03-29 22:38:10

阅读数:48

评论数:0

scikit-learn的Scaler

具体将这种归一化算法用在我们机器学习过程中的时候有一个很重要的注意事项。对应我们原始数据集,我们要将他们拆分成训练数据集和测试数据集如果我们要用归一化数据来训练我们的模型显然我们先要对训练数据集进行归一化处理我们相应就要求出我们训练数据集对于的均值mean_train 方差std_train最终我...

2018-03-23 21:28:25

阅读数:145

评论数:0

数据归一化

我们完成分类的时候少做了数据归一化Featur Scaling两本间的距离发现以时间为主导在这个例子中,假设两个特征 ,肿瘤大小和发现时间这两个样本的距离如果是欧拉距离,就是以时间主导了虽然样本数据中5和1相差5倍,200和100相差2倍但是由于量纲不同,导致了最终的距离其实是主要发现的天数他们之...

2018-03-22 21:48:15

阅读数:71

评论数:0

网格搜索与k近邻算法中更多超参数

p这个超参数只有在weights = "distance"的时候才有意义对于一些超参数之间是存在一定依赖关系sl为我们封装了一个专门网格搜索的方式Grid Search首先我们要定义我们搜索的参数对于我们要搜索的参数,我们定义成param_grid这是一个数组,...

2018-03-21 21:15:12

阅读数:175

评论数:0

超参数

在kNN算法中 k参数被封装成n_neighbors参数之前我们都是随意的传递3,5.究竟传什么参数最好,这就涉及机器学习非常重要的问题:超参数超参数:运行学习机器学习算法之前,需要指定的参数例如kNN算法的k与超参数对应的是模型参数模型参数:算法过程中学习的参数 kNN算法只有超参数,没有模型参...

2018-03-20 22:38:41

阅读数:202

评论数:0

分类准确度

分类的准确度:accuracy加载sklearn中手写数字这样一个库digits = datasets.load_digits()我们可以print(digits.DESCR)查看相关信息这个数据库有5620个数据每个数据有64个属性或者特征64个特征是8*8图像每个类别是10个之一 0-9不过我...

2018-03-19 21:49:06

阅读数:213

评论数:0

读取数据和简单的数据探索

import numpy as npimport matplotlib as mplimport matplotlib.pyplot as pltfrom sklearn import datasets(sklearn库,我们用datasets模块)datasets模块包含了各种数据dataset...

2018-03-15 21:50:11

阅读数:81

评论数:0

Matplotlib

对我们的数据进行可视化加载这个数据非常简单import matplotlib as mpl不过我们用到的机会并不多,除非要做非常专业的图片我们通常只使用简单的图片处理,用他的子模块import matplotlib.pyplot as pltimport numpy as npx = np.lin...

2018-03-15 21:31:19

阅读数:39

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭