
从数据到洞察:ChatGPT如何革新Python数据分析流程
在数据清洗阶段,我们会对数据进行格式化、标准化处理,使得后续的数据处理和分析工作更加顺畅。l 删除法:当缺失的观测比例非常低时(如5%以内),可以直接删除存在缺失的观测,或者当某些变量的缺失比例非常高时(如85%以上),直接删除这些缺失的变量。l 缺失值删除:直接删除有缺失值的行或者列是最简单的方式,前提是缺失数据的比例较少,而且缺失数据是随机出现的,这样删除缺失数据后对分析结果影响不大。从ChatGPT给出的答案可知,数据清洗的技术非常多,提高数据质量最常用的就是重复值、缺失值及异常值的处理。













