三色旗的问题最早由E.W.Dijkstra所提出,他所使用的用语为Dutch Nation Flag(Dijkstra为荷兰人),而多数人会则使用Three-Color Flag来称之。
假设有一条绳子,上面有蓝、白、红三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上进行这个动作,而且一次只能调换两个旗子。
解法:在一条绳子上移动,意味只能使用一个阵列,而不使用其它的阵列来作辅助,问题的解法很简单(就是3种值的排序),您可以自己想像一下在移动旗子,从绳子开头进行,遇到蓝色往前移,遇到白色留在中间,遇到红色往后移。
如果当前位置W(实际上也会白色有关)所在的位置为白色,则W+1,不处理。如果W部份为蓝色,则B(蓝色指针)与W的元素对调,而B与W必须各+1,表示两个群组都多了一个元素。如果W所在的位置是红色,则将W与R交换,但R(应为R是红色放最后,所以R初始为全部)要减1,表示未处理的部份减1。
注意B、W、R并不是三色旗的个数,它们只是一个移动的指标。一开始时未处理的R指标会是等于旗子的总数,当R的索引数减至少于W的索引数时,表示接下来的旗子就都是红色了,此时就可以结束移动(红色放最后,不管,如果白色和红色指针交叉了,就结束了)。
方法一:调用STL:
输入“red,blue ,white";就会输出结果
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
bool compare(const string& x,const string& y)
{
int a,b;
if(x=="blue")
a=1;
else if(x=="white")
a=2;
else a=3;
if(y=="blue")
b=1;
else if(y=="white")
b=2;
else b=3;
return a<b;
}
int main()
{
vector<string> flags;
string s;
cout<<"Place enter your Flags \"End-of-file Ctrl+Z\" : "<<endl;
while(cin>>s)
{
flags.push_back(s);
}
sort(flags.begin(),flags.end(),compare);
cout<<"Result:"<<endl;
for(vector<string>::size_type i=0;i!=flags.size();++i)
{
cout<<flags[i]<<endl;
}
system("pause");
return 0;
}
结果:
缺点:容错性较差,用户输入要求严格;
方法二:
#include<iostream>
#include<string>
#include<iomanip>
using namespace std;
#define N 50
//BLUE 'b';WHITE 'w';RED 'r'
int main()
{
int bflag=0,wflag=0,rflag;
char *flags=new char[N];
cout<<"please input the string:"<<endl;
cin>>flags;
rflag=strlen(flags)-1;
cout<<"the origin string is :"<<endl;
cout<<flags<<endl;
while(wflag<=rflag)
{
if(flags[wflag]=='w')
{
wflag++;
}
else if(flags[wflag]=='b')
{
swap(flags[wflag],flags[bflag]);
wflag++;bflag++;
}
else
{
while(wflag<rflag&&flags[rflag]=='r')
rflag--;
swap(flags[wflag],flags[rflag]);
rflag--;
}
}
cout<<"the ordered string is :"<<endl;
cout<<flags<<endl;
system("pause");
return 0;
}