python判断一个文件每行数据是否有相同元素,相同的元素name唯一,value值合并

本文介绍了两种方法来处理Python文件中具有相同元素的行数据。方法一是使用工程化思维,通过编写代码合并相同的元素;方法二是利用pandas的高效处理能力,实现快速合并。最终目标是确保name唯一,value值合并。
摘要由CSDN通过智能技术生成

方法一:工程化思维,就是程序员正常思维 ,直接写代码

建一个缓存表,循环遍历lines,放到缓存表,缓存表存储不重复的元素
数据格式:

其他股份有限公司分公司(上市)	VAR_COMPANY_TYPE
外商投资	VAR_COMPANY_TYPE
共建  VAR_COMPANY_TYPE
国有事业单位营业	VAR_COMPANY_TYPE
共建  VAR_MANAGER
class Example():

    def foo(self):
        lines = open("test1.txt",encoding="utf-8").readlines()
        lst = []
        for i in range
### 使用 Pandas DataFrame 合并行单元格 在处理表格数据时,有时需要合并具有相同的相邻行。Pandas本身并不直接提供用于合并行的功能,但可以通过自定义方法实现这一目标。 对于简单的重复项删除操作可以使用 `drop_duplicates` 方法来移除完全相同的行[^1]: ```python import pandas as pd data = {'A': ['foo', 'bar', 'foo', 'bar'], 'B': ['one', 'one', 'two', 'three']} df = pd.DataFrame(data) # 删除列 A 和 B 上有重复的行 result_df = df.drop_duplicates() ``` 然而当涉及到更复杂的场景比如跨多行合并特定条件下的单元格,则可能需要用到groupby结合agg函数的方式[^2]: ```python def merge_consecutive_rows(df, column_name): """ 将连续相等的行按照指定列进行合并 参数: df (pd.DataFrame): 输入的数据框. column_name (str): 要检查是否连续相等的列名. 返回: merged_df (pd.DataFrame): 处理后的数据框. """ # 创建一个新的布尔列表表示当前元素与其前一个不同之处 mask = df[column_name].ne(df[column_name].shift()) # 对于每一个分组应用聚合操作 grouped = df[mask].groupby((~mask).cumsum()).agg({column_name:'first'}) return grouped.reset_index(drop=True) example_data = { "Category": ["X", "X", "Y", "Z"], "Value": [10, 15, 7, 9], } example_df = pd.DataFrame(example_data) merged_example_df = merge_consecutive_rows(example_df, "Category") print(merged_example_df) ``` 上述代码展示了如何通过创建辅助掩码以及利用累计求和(`cumsum`)技巧来进行基于给定条件下对DataFrame中的某些行执行合并动作[^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值