音乐推荐项目

本文介绍了一个音乐推荐项目的实现细节,包括如何计算用户对歌曲的喜好分数,利用倒排索引优化计算,以及数据存储和实时处理流程。数据存储在MySQL和HDFS中,用户行为数据实时采集并存储在HBase。特征处理和模型训练使用LR,保存特征映射用于线上打分和排序,最终实现多样化的推荐策略。
摘要由CSDN通过智能技术生成

音乐数据有3个原始文件:
①music_meta(音乐信息),有以下字段

'item_id', '   item_name',       'desc',         'total_timelen',       'location',       'tags'
音乐id ,       音乐名称,      音乐描述, 音乐总共的时长,  发布的地区,  标签

②user_profile.data(用户信息)

'user_id', 'gender', 'age', 'salary', 'province'

③user_watch_pref.sml(用户听歌的行为)

'user_id',     'item_id',    'stay_seconds',        'hour'
用户id,         听的音乐id,     听歌的时长(秒) ,       听歌时候的时间

music_data中有total_timelen字段,而user_watch中有stay_seconds字段,则
score=stay_seconds/total_timelen。假如用户听歌1800s,这首歌中总时长300s,则1800/300=6,说明这首歌用户听了6次。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值