错排详解
一、 错排原理的分析:
第一步:将编号为1的元素放在第2到第n个位置之上:有n-1种方法
第二步:错排余下的n-1个元素
1、若1号元素划等号在第k个位置,第二步就是把K这个元素排好(因为K元素相对应的位置上已经被1给占领了)。如果恰好K这个元素也排在了1的位置上,那么接下来的n-2个元素在与它们的编号相等的位置上再进行错排:有f(n-2)种方法
2、若K这个元素恰巧没排在第1个位置上。这时可将第1个位置“看成”第K个位置,于是就还余下n-1个元素的错排,有f(n-1)种方法。
二、错排情况的公式:
根据乘法原理可以得到有N个元素时的错排情况公式有:(n-1)*[(f-2)+(f-1)] [n>2]
三、错排原理的模拟:信封
1封信封 不存在着错排的情况:所有情况为0
2封信封 只有如下一种情况:
3封信封 两种情况
4封信封
对1 号信封做特殊处理,1号信封不放在1号位置的可能有3种情况。即(4-1)
然后再分情况讨论:
1、若1号信封刚好放在3的位置上,而3号信封又刚好放在1的位置上,那么就只能有2、4的错排也就是2只能放在4 4只能放在2上也就是f(n-2)也就是两个元素的错排情况:f(4-2)=1[由上面的分析得出]情况:
2、若1号信封放在3的位置上,而3号信封不知道放在哪,也就是还剩下3封信封的错排情况:f(3)的情况也就是3封信封的错排情况
于是得到:4封信封的错排方法有:3*(1+2)=9种
根据乘法原理:(n-1)*[(f-2)+(f-1)] [n>2]