Java判断图像相似性

判断图像的相似性主要用于图像的去重,一种验证相似性的思路是先将图像进行缩放至指定尺寸,然后进行灰度处理,去掉颜色特征,最后对处理后的图像计算哈希值,通过比对不同图像的哈希值的汉明距离来判断图像是否相似,下面我们直接上代码:

package com.jianggujin.image;

import java.awt.Graphics2D;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

/**
 * 图片相似性
 * 
 * @author jianggujin
 *
 */
public class ImageSimilarity {
   public static int size = 32;
   public static int smallerSize = 8;
   // DCT function stolen from
   // http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java
   private static double[] c;

   static {
      c = new double[size];

      for (int i = 1; i < size; i++) {
         c[i] = 1;
      }
      c[0] = 1 / Math.sqrt(2.0);
   }

   /**
    * 通过汉明距离计算相似度
    * 
    * @param hash1
    * @param hash2
    * @return
    */
   public static double calSimilarity(String hash1, String hash2) {
      return calSimilarity(getHammingDistance(hash1, hash2));
   }

   /**
    * 通过汉明距离计算相似度
    * 
    * @param hammingDistance
    * @return
    */
   public static double calSimilarity(int hammingDistance) {
      int length = size * size;
      double similarity = (length - hammingDistance) / (double) length;

      // 使用指数曲线调整相似度结果
      similarity = Math.pow(similarity, 2);
      return similarity;
   }

   /**
    * 通过汉明距离计算相似度
    * 
    * @param image1
    * @param image2
    * @return
    * @throws IOException
    */
   public static double calSimilarity(File image1, File image2) throws IOException {
      return calSimilarity(getHammingDistance(image1, image2));
   }

   /**
    * 获得汉明距离
    * 
    * @param hash1
    * @param hash2
    * @return
    */
   public static int getHammingDistance(String hash1, String hash2) {
      int counter = 0;
      for (int k = 0; k < hash1.length(); k++) {
         if (hash1.charAt(k) != hash2.charAt(k)) {
            counter++;
         }
      }
      return counter;
   }

   /**
    * 获得汉明距离
    * 
    * @param image1
    * @param image2
    * @return
    * @throws IOException
    */
   public static int getHammingDistance(File image1, File image2) throws IOException {
      return getHammingDistance(getHash(image1), getHash(image2));
   }

   /**
    * 返回二进制字符串,类似“001010111011100010”,可用于计算汉明距离
    * 
    * @param imageFile
    * @return
    * @throws IOException
    * @throws Exception
    */
   public static String getHash(File imageFile) throws IOException {
      BufferedImage img = ImageIO.read(imageFile);

      /*
       * 1. Reduce size. Like Average Hash, pHash starts with a small image.
       * However, the image is larger than 8x8; 32x32 is a good size. This is
       * really done to simplify the DCT computation and not because it is
       * needed to reduce the high frequencies.
       */
      img = resize(img, size, size);

      /*
       * 2. Reduce color. The image is reduced to a grayscale just to further
       * simplify the number of computations.
       */
      img = grayscale(img);

      double[][] vals = new double[size][size];

      for (int x = 0; x < img.getWidth(); x++) {
         for (int y = 0; y < img.getHeight(); y++) {
            vals[x][y] = getBlue(img, x, y);
         }
      }

      /*
       * 3. Compute the DCT. The DCT separates the image into a collection of
       * frequencies and scalars. While JPEG uses an 8x8 DCT, this algorithm
       * uses a 32x32 DCT.
       */
      // long start = System.currentTimeMillis();
      double[][] dctVals = applyDCT(vals);
      // System.out.println("DCT: " + (System.currentTimeMillis() - start));

      /*
       * 4. Reduce the DCT. This is the magic step. While the DCT is 32x32, just
       * keep the top-left 8x8. Those represent the lowest frequencies in the
       * picture.
       */
      /*
       * 5. Compute the average value. Like the Average Hash, compute the mean
       * DCT value (using only the 8x8 DCT low-frequency values and excluding
       * the first term since the DC coefficient can be significantly different
       * from the other values and will throw off the average).
       */
      double total = 0;

      for (int x = 0; x < smallerSize; x++) {
         for (int y = 0; y < smallerSize; y++) {
            total += dctVals[x][y];
         }
      }
      total -= dctVals[0][0];

      double avg = total / (double) ((smallerSize * smallerSize) - 1);

      /*
       * 6. Further reduce the DCT. This is the magic step. Set the 64 hash bits
       * to 0 or 1 depending on whether each of the 64 DCT values is above or
       * below the average value. The result doesn't tell us the actual low
       * frequencies; it just tells us the very-rough relative scale of the
       * frequencies to the mean. The result will not vary as long as the
       * overall structure of the image remains the same; this can survive gamma
       * and color histogram adjustments without a problem.
       */
      StringBuilder hash = new StringBuilder();

      for (int x = 0; x < smallerSize; x++) {
         for (int y = 0; y < smallerSize; y++) {
            if (x != 0 && y != 0) {
               hash.append((dctVals[x][y] > avg ? "1" : "0"));
            }
         }
      }

      return hash.toString();
   }

   private static BufferedImage resize(BufferedImage image, int width, int height) {
      BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
      Graphics2D g = resizedImage.createGraphics();
      g.drawImage(image, 0, 0, width, height, null);
      g.dispose();
      return resizedImage;
   }

   private static BufferedImage grayscale(BufferedImage img) {
      new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null).filter(img, img);
      return img;
   }

   private static int getBlue(BufferedImage img, int x, int y) {
      return (img.getRGB(x, y)) & 0xff;
   }

   private static double[][] applyDCT(double[][] f) {
      int N = size;

      double[][] F = new double[N][N];
      for (int u = 0; u < N; u++) {
         for (int v = 0; v < N; v++) {
            double sum = 0.0;
            for (int i = 0; i < N; i++) {
               for (int j = 0; j < N; j++) {
                  sum += Math.cos(((2 * i + 1) / (2.0 * N)) * u * Math.PI)
                        * Math.cos(((2 * j + 1) / (2.0 * N)) * v * Math.PI) * (f[i][j]);
               }
            }
            sum *= ((c[u] * c[v]) / 4.0);
            F[u][v] = sum;
         }
      }
      return F;
   }
}

我们可以找两张图像进行测试:

package test;

import java.io.File;

import org.junit.Test;

import com.jianggujin.image.ImageSimilarity;

public class ImageSimilarityTest {
   @Test
   public void test() throws Exception {
      // 获取图像
      File imageFile1 = new File("1.jpg");
      File imageFile2 = new File("2.jpg");
      System.err.println(ImageSimilarity.calSimilarity(imageFile1, imageFile2));
      System.err.println(ImageSimilarity.calSimilarity(imageFile1, imageFile1));
   }
}

我使用的测试图像的结果为:

0.9632349014282227
1.0

我们可以按照需求对最后的结果进行判断,值越大,相似度越高

阅读更多

扫码向博主提问

蒋固金

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • java
  • oracle
  • js
去开通我的Chat快问
版权声明:本文为博主原创文章,转载请标明出处。 https://blog.csdn.net/jianggujin/article/details/80205459
个人分类: JAVA
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭