数据仓库--DWM层

DWM层在数据仓库中用于提升公共指标的复用性,减少重复加工。它包括两种轻度汇总表:单一维度和多维度。单一维度汇总表具有维度单一、统计指标丰富的特点,适合灵活迭代;多维度汇总表则结合多种维度,适用于多维度分析,但迭代复杂,需要关注指标累加性以保证数据准确性。
摘要由CSDN通过智能技术生成

DWM(Data WareHouse Middle)数据中间层,该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。一般而言,针对dwm层的设计开发是建立在,积累一定数量DM和APP相关需求后,将设计到重复的指标和维度下沉到DWM的表中,因此在数仓建立初期,可能会有直接跳过DWM来开发的情况,但是随着相似的需求不断的增加,DWM的开发势在必行,而到了这种时候,我们可以以历史需求为参考,思考那些指标和维度是业务真正需要的,从而设计相应的表,避免开发大量无用的表,消耗不必要的存储和计算资源。在该层中的汇总表根据维度数量不同分为2种,一种是单一维度轻度汇总表,另一种是多维度轻度汇总表。

1.单一维度轻度汇总表

针对单一维度下的轻度汇总表。比如在电商场景下,想要了解每个城市的售卖情况。就可以以城市为主要维度开发指标,后续所有与城市相关得分交易汇总指标都可以放到该表中。在单一维度的轻度汇总表中我们可以将各种统计类型的指标都放到这一层来计算,并且设计灵活,开发完成后如果想要增加其他指标,可以直接追加比较容易。总而言之,该类表的主要特点是:维度单一,统计指标丰富,迭代灵活。

2.多维度轻度汇总表

当我们不满足于某一维度下的指标时,单一维度的汇总表可能就无法使用了。比如说每个城市下新老用户的购买情况。当然,如果通过DWD层的相关表去计算也是可以的,但是可能导致大量的重复计算,这个时候就需要一个多维度的轻度汇总表。把通用的维度和高频汇总

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值