题目描述
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票一次),设计一个算法来计算你所能获取的最大利润。
注意:你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
解题思路
1. 单次循环,记录最小值下标,即寻找出最小值的下标
class Solution(object): def maxProfit(self, prices): """ :type prices: List[int] :rtype: int """ minprice = float('inf') max = 0 for i in range(len(prices)): if prices[i] < minprice: minprice = prices[i] if prices[i] - minprice > max: max = prices[i] - minprice return max S = Solution() print(S.maxProfit([7,6,4,3,1]))
2.动态规划
本题假设第 i 天 “结束”时手上是否持有股票作为状态。
f[i][0]表示第i天结束时手上有股票;f[i][1]表示第i天结束时手上没有股票;
f[i][0]:第i天结束时手上有股票分两种情况,一是第i-1天结束时就有股票,今天没有任何操作;二是第i-1天结束时没有股票(因为只能买一次股票,所以这里的没有股票指的是从未买过),但是今天买了股票(-prices[i])。
f[i][0]=fmax(f[i-1][0],0-prices[i])
f[i][1]:第i天结束时手上没有股票分两种情况,一是第i-1天结束时就没有股票,今天没有任何操作;二是第i-1天结束时有股票,但是今天卖出去了(+prices[i]),导致今天结束时已经没有股票了。
f[i][1]=fmax(f[i-1][1],f[i-1][0]+prices[i])
class Solution(object): def maxProfit(self, prices): """ :type prices: List[int] :rtype: int """ dp = [[0 for i in range(len(prices))] for j in range(2)] dp[0][0] = -prices[0] for i in range(1, len(prices)): dp[0][i] = max(dp[0][i - 1], -prices[i]) dp[1][i] = max(dp[1][i - 1], dp[0][i - 1] + prices[i]) for i in dp: print(i) return max(dp[0][-1], dp[1][-1]) S = Solution() print(S.maxProfit([7,1,5,3,6,4]))