- 支持向量机(Support Vector Machine,简称SVM)。
超平面
-
分类学习最基本的想法就是基于训练集合D在样本空间中找到一个划分超平面,将不同类别的样本分开。
-
但能将训练样本分开的划分超平面可能有很多,应该努力去找到哪一个呢?直观上看应该去找位于两类训练样本正中间的划分超平面,因为该划分超平面对训练样本局部扰动的“容忍”性最好。这个划分超平面所产生的分类结果是最鲁棒的,对未见示例的泛化能力最强。
-

-
在样本空间中划分超平面可通过如下线性方程来描述:
w T x + b = 0 w^Tx+b=0 wTx+b=0其中: w = ( w 1 ; w 2 ; . . . ; w d ) w=(w_1;w_2;...;w_d) w=(w1;w2;...;wd)为法向量,决定了超平面的方向;
b b b 为位移项,决定了超平米与原点之间的距离。 -
划分超平面可以被法向量 w w w 和位移 b b b 确定,记为 ( w , b ) (w, b) (w,b) 。样本空间中人一点 x x x 到超平面 ( w , b ) (w, b) (w,b) 的距离可写为:
r = ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ r=\frac{|w^Tx+b|}{||w||} r=∣∣w∣∣∣wTx+b∣

最低0.47元/天 解锁文章
1061

被折叠的 条评论
为什么被折叠?



