使用矩池云下载matlab R2019b(参考其他博主)

使用矩池云下载matlab R2019b(参考其他博主)
自己留着记录一下,防止自己忘记嘿嘿


前言

提高矩池云的服务器下载matlab软件,对博主做的总结进行记录,防止自己下次遗忘


一、使用步骤

1.打开矩池云,下载VNC

矩池云链接link https://www.matpool.com/?__rld_cnt=7

我是去CPU找主机:
我是直接去CPU找主机VNC使用教程,参考来源:link https://blog.csdn.net/weixin_48344945/article/details/107023612

2.在矩池云下载matlab R2019b软件

参考来源:

### 如何在矩池云上部署 DeepSeek 为了实现DeepSeek模型在矩池云上的部署,需遵循一系列特定的操作流程来确保顺利实施。虽然具体细节可能因平台更新而有所变化,但基本步骤通常涉及环境准备、资源配置以及模型加载等方面。 #### 环境设置与依赖安装 首先,在矩池云平台上创建一个新的计算实例,并选择适合深度学习任务的硬件规格。接着,通过SSH连接到该实例后,安装必要的软件包和库文件以支持PyTorch或其他框架下的模型运行。这一步骤对于任何基于云端的服务都是至关重要的[^1]。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` #### 配置存储空间与数据集上传 考虑到训练过程中可能会涉及到大量数据读取写入操作,合理规划磁盘分区显得尤为重要。可以利用矩池云提供的对象存储服务(OSS),将预处理后的数据集提前上传至指定位置以便后续调用。此外,还需注意调整权限设置使得应用程序能够正常访问所需资源。 #### 加载并优化模型性能 完成上述准备工作之后,则可着手于实际的模型部署环节。针对DeepSeek这样的大型语言模型而言,除了常规意义上的权重参数导入外,还应考虑采用混合精度推理(Mixed Precision Inference)技术或是量化(Quantization)手段进一步提升效率降低延迟。与此同时,借助矩池云特有的GPU加速功能亦能显著改善整体表现效果[^2]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "deepseek-model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda') ``` #### 测试验证阶段 最后,在正式投入使用前务必进行全面的功能性和稳定性测试。可以通过编写简单的API接口或者命令行工具来进行初步评估;也可以邀请部分内部员工参与试用反馈意见从而不断改进直至达到预期目标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值