转载自http://blog.csdn.net/chenjie863/article/details/25227459
有部分内容修改
1. 时针分针重合几次
表面上有60个小格,每小格代表一分钟,
时针每分钟走1/12小格,分针每分钟走1小格,从第一次重合到第二次重合分针比时针多走一圈即60小格,所以
60/(1-1/12)=720/11
每隔720/11分才重合一次(而并不是每小时重合一次)
0点到24点共经过24个小时即1440分钟,重合了1440/(
720/11)=22次。
2. 找出字符串的最长不重复子串,输出长度
建一个256个单元的数组,每一个单元代表一个字符,数组中保存上次该字符上次出现的位置;
依次读入字符串,同时维护数组的值;
如果遇到冲突了,就返回冲突字符中保存的位置,继续第二步。也可以用hashmap保存已经出现的字符和字符的位置
3. 说是有一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出
现的前十个词。
先用哈希,统计每个词出现的次数,然后在用在N个数中找出前K大个数的方法找出出现
次数最多的前10个词。
4. 如题3,但是车次文件特别大,没有办法一次读入内存。
1) 直接排序,写文件时,同时写入字符串及其出现
次数。
2) 可以用哈希,比如先根据字符串的第一个字符将字符串换分为多个区域,每个区域的字符串写到一个文件内,然后再用哈希+堆统计每个区域内前10个频率最高的字符串,最后求出所有字符串中前10个频率最高的字符串。
5. 有一个整数n,将n分解成若干个整数之和,问如何分解能使这些数的乘积最大,输出这个乘积m。例如:n=12
(1)分解为1+1+1+…+1,12个1, m=1*1*1……*1=1
(2)分解为2+2+…+2,6个2, m=64
(3)分解为3+3+3+3,4个3, m=81
(4)分解为4+4+4,3个4, m=64
因此
f(4) = 2*2
f(3) = 3
f(2) = 2
f(n) = 3*f(n-3) n>4
(大于等于4时,只能分解为2和3,且2最多两个)
为什么呢?
首先把一个正整数
拆成若干正整数只有有限种拆法,所以存在最大乘积。
假设 并且 是最大乘积.
假设 并且 是最大乘积.
- 显然1不会出现在其中;
- 如果对于某有,那么把拆成,我们有,所以不存在大于等于5的因子;
- 如果, 拆成乘积不变,所以不妨假设没有4;
- 如果有三个以上的, 那么,所以替换成3乘积更大
6. 求数组n中出现次数超过一半的数
把数组分成[n/2]组,则至少有一组包含重复的数,因为如果无重复数,则最多只有出现次数等于一半的数。算法如下:
k<-n;
while k>3 do
把数组分成[k/2]组;
for i=1 to [k/2] do
if 组内2个数相同,则任取一个数留下;
else 2个数同时扔掉;
k<-剩下的数
if k=3
then 任取2个数进行比较;
if 两个数不同,则2个数都扔掉
else 任取一个数
if k=2 or 1 then 任取一数
或者:
int findMor(int* a, int n)
{
int cur_val;
int cur_num = 0;
for (int i = 0; i < n; i++)
{
if (cur_num == 0)
{
cur_val = a[i];
cur_num++;
}
else
{
if (cur_val == a[i])
cur_num++;
else
cur_num--;
}
}
return cur_val;
}
7. A文件中最多有n个正整数,而且每个数均小于n,n <=10的七次方。不会出现重复的数。
要求对A文件中的数进行排序,可用内存为1M,磁盘可用空间足够。
不要把任何问题都往很复杂的算法上靠,最直接最简单的解决问题才是工程师应有的素质,
题目给的很有分寸:n个数,都小于n,两两不同,1M=10^6byte=10^7bit的内存,n <10^7
思路:
把1M内存看作是一个长度为10^7的位数组,每一位都初始化为0
从头扫描n个数,如果碰到i,就把位数组的第i个位置置为1,
1M内存有点少, (1M = 8M bits), 可以代表8M整数,现在n <=10的七次方,你可以读2遍文件,就可以完成排序了。第一次排n <8M得数, 第2遍排 8M <n <10的七次方的数。
8. 有10亿个杂乱无章的数,怎样最快地求出其中前1000大的数。
1) 建一个1000个数的堆,复杂度为N*(log1000)=10N
2) 1.用每一个BIT标识一个整数的存在与否,这样一个字节可以标识8个整数的存在与否,对于所有32位的整数,需要512Mb,所以开辟一个512Mb的字符数组A,初始全0
2.依次读取每个数n,将A[n>>3]设置为A[n>>3]|(1<<n%8),相当于将每个数的对应位设置为1
3.在A中,从大到小读取1000个值为1的数,就是最大的1000个数了。
这样读文件就只需要1遍,在不考虑内存开销的情况下,应该是速度最快的方法了。
9. 一棵树节点1, 2, 3, ... , n. 怎样实现:
先进行O(n)预处理,然后任给两个节点,用O(1)判断它们的父子关系
dfs一遍,记录每个结点的开始访问时间Si和结束访问时间Ei
对于两个节点i,j,若区间[Si,Ei]包含[Sj,Ej],则i是j的祖先。给每个节点哈夫曼编码也行,但只适合一般的二叉树,而实际问题未必是Binary的,所以编码有局限性
10. 给定一个二叉树,求其中N(N>=2)个节点的最近公共祖先节点。每个节点只有左右孩
子指
针,没有父指针。
后序递归给每个节点打分,每个节点的分数=左分数+右分数+k,如果某孩子是给定节点则+1
最深的得分为N的节点就是所求吧,细节上应该不用递归结束就可以得到这个节点
11. 如何打印如下的螺旋队列:
21 22 。。。。
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
#include <stdio.h>
#define max(a,b) ((a)<(b)?(b):(a))
#define abs(a) ((a)>0?(a):-(a))
int foo(int x, int y)
{
int t = max(abs(x), abs(y));
int u = t + t;
int v = u - 1;
v = v * v + u;
if (x == -t)
v += u + t - y;
else if (y == -t)
v += 3 * u + x - t;
else if (y == t )
v += t - x;
else
v += y - t;
return v;
}
int main()
{
int x, y;
for (y=-2;y<=2;y++)
{
for (x=-2;x<=2;x++)
printf("%5d", foo(x, y));
printf("\n");
}
return 0;
}
第 0 层规定为中间的那个 1,第 1 层为 2 到 9,第 2 层为 10 到 25,……好像看出一点名堂来了?注意到 1、9、25、……不就是平方数吗?而且是连续奇数(1、3、5、……)的平方数。这些数还跟层数相关,推算一下就可以知道第 t 层之内一共有 (2t-1)^2 个数,因而第 t 层会从 [(2t-1)^2] + 1 开始继续往外螺旋。给定坐标 (x,y),如何知道该点处于第几层?so easy,层数 t = max(|x|,|y|)。
知道了层数,接下来就好办多了,这时我们就知道所求的那点一定在第 t 层这个圈上,顺着往下数就是了。要注意的就是螺旋队列数值增长方向和坐标轴正方向并不一定相同。我们可以分成四种情况——上、下、左、右——或者——东、南、西、北,分别处于四条边上来分析。
东|右:x == t,队列增长方向和 y 轴一致,正东方向(y = 0)数值为 (2t-1)^2 + t,所以 v = (2t-1)^2 + t + y
南|下:y == t,队列增长方向和 x 轴相反,正南方向(x = 0)数值为 (2t-1)^2 + 3t,所以 v = (2t-1)^2 + 3t - x
西|左:x == -t,队列增长方向和 y 轴相反,正西方向(y = 0)数值为 (2t-1)^2 + 5t,所以 v = (2t-1)^2 + 5t - y
北|上:y == -t,队列增长方向和 x 轴一致,正北方向(x = 0)数值为 (2t-1)^2 + 7t,所以 v = (2t-1)^2 + 7t + x
12. 一个整数,知道位数,如何判断它是否能被3整除,不可以使用除法和模运算
首先 3x=2^n+1时 仅当 n 为奇数才可能 因为2^n = 3x + (-1)^n;所以该问题就转化为了
找到最后一个为1的位a,看看向前的一个1(b)和这个位的距离,如果为偶数的距离则不能整除,如果是奇数,去除b之后的位继续判断
或者:
3是一个比较特别的数,其二进制表示是0b11,也就是说任何一个数乘以3的结果实际上是这个数与其左移1位后相加的结果。现在给出一个数a,假设它能被3整除,结果是b,即a=3*b,那么从二进制乘法运算判断出,b的最低位与a的最低位一定是相同的,从而得到了b的最低位,将这个位左移1位变成次低位,那么a的次低位以上的比特减去这个位后在次低位上的结果一定是b的次低位。以此类推可以求出b的各个比特,如果最后能完成对b的各位的计算,那么a能够被3整除,否则不能被3整除。
最后将上述思路写成代码是:
13. seq=[a,b,...,z,aa,ab,...,az,ba,bb...,bz,...za,zb,...,zz,aaa...],求[a-z]+(从a到z任意字符组成的字符串)s在seq的位置,即排在第几
本质就是26进制。
大家都知道,看一个数是否能被2整除只需要看它的个位能否被2整除即可。可是你想过为什么吗?这是因为10能被2整除,因此一个数10a+b能被2整除当且仅当b能被2整除。大家也知道,看一个数能否被3整除只需要看各位数之和是否能被3整除。这又是为什么呢?答案或多或少有些类似:因为10^n-1总能被3整除。2345可以写成2*(999+1) + 3*(99+1) + 4*(9+1) + 5,展开就是2*999+3*99+4*9 + 2+3+4+5。前面带了数字9的项肯定都能被3整除了,于是要看2345能否被3整除就只需要看2+3+4+5能否被3整除了。当然,这种技巧只能在10进制下使用,不过类似的结论可以推广到任意进制。
注意到36是4的整数倍,而ZZZ...ZZ除以7总是得555...55。也就是说,判断一个36进制数能否被4整除只需要看它的个位,而一个36进制数能被7整除当且仅当各位数之和能被7整除。如果一个数同时能被4和7整除,那么这个数就一定能被28整除。于是问题转化为,有多少个连续句子满足各位数字和是7的倍数,同时最后一个数是4的倍数。这样,我们得到了一个O(n)的算法:用P[i]表示前若干个句子除以7的余数为i有多少种情况,扫描整篇文章并不断更新P数组。当某句话的最后一个字能被4整除时,假设以这句话结尾的前缀和除以7余x,则将此时P[x]的值累加到最后的输出结果中(两个前缀的数字和除以7余数相同,则较长的前缀多出来的部分一定整除7)。
上述算法是我出这道题的本意,但比赛后我见到了其它各种各样新奇的算法。比如有人注意到36^n mod 28总是等于8,利用这个性质也可以构造出类似的线性算法来。还有人用动态规划(或者说递推)完美地解决了这个问题。我们用f[i,j]表示以句子i结束,除以28余数为j的文本片段有多少个;处理下一句话时我们需要对每一个不同的j进行一次扫描,把f[i-1,j]加进对应的f[i,j']中。最后输出所有的f[i,0]的总和即可。这个动态规划可以用滚动数组,因此它的空间同前面的算法一样也是常数的。
如果你完全不知道我在说什么,你可以看看和进位制、同余相关的文章。另外,我之前还曾出过一道很类似的题(VOJ1090),你可以对比着看一看。
有一个整数n,写一个函数f(n),返回0到n之间出现的"1"的个数。比如f(13)=6,现在f(1)=1,问有哪些n能满足f(n)=n?
例如:f(13)=6, 因为1,2,3,4,5,6,7,8,9,10,11,12,13.数数1的个数,正好是6.
public class Test {
public int n = 2;
public int count = 0;
public void BigestNumber(int num) {
for (int i = 1; i <= num; i++) {
int m = 0;
int j = i;
while (j > 0) {
m = j % 10;
if (m == 1)
count++;
if (j > 0)
j = j / 10;
}
}
System.out.println("f(" + num + ")=" + count);
}
public static void main(String args[]) {
Test t = new Test();
long begin = System.currentTimeMillis();
t.BigestNumber(10000000);
long end = System.currentTimeMillis();
System.out.println("总时间" + (end-begin)/1000 + "秒");
}
}
结果:
f(10000000)=7000001
总时间5秒
1、将一整数逆序后放入一数组中(要求递归实现)
void convert(int *result, int n) {
if(n>=10)
convert(result+1, n/10);
*result = n%10;
}
int main(int argc, char* argv[]) {
int n = 123456789, result[20]={};
convert(result, n);
printf("%d:", n);
for(int i=0; i<9; i++)
printf("%d", result);
}
2、求高于平均分的学生学号及成绩(学号和成绩人工输入)
double find(int total, int n) {
int number, score, average;
scanf("%d", &number);
if(number != 0) {
scanf("%d", &score);
average = find(total+score, n+1);
if(score >= average)
printf("%d:%d\n", number, score);
return average;
} else {
printf("Average=%d\n", total/n);
return total/n;
}
}
int main(int argc, char* argv[]) {
find(0, 0);
}
3、递归实现回文判断(如:abcdedbca就是回文,判断一个面试者对递归理解的简单程序)
int find(char *str, int n)
{
if(n<=1) return 1;
else if(str[0]==str[n-1]) return find(str+1, n-2);
else return 0;
}
int main(int argc, char* argv[]) {
char *str = "abcdedcba";
printf("%s: %s\n", str, find(str, strlen(str)) ? "Yes" : "No");
}
4、组合问题(从M个不同字符中任取N个字符的所有组合)
void find(char *source, char *result, int n) {
if(n==1) {
while(*source)
printf("%s%c\n", result, *source++);
} else {
int i, j;
for(i=0; source != 0; i++);
for(j=0; result[j] != 0; j++);
for(; i>=n; i--) {
result[j] = *source++;
result[j+1] = '\0';
find(source, result, n-1);
}
}
}
int main(int argc, char* argv[]) {
int const n = 3;
char *source = "ABCDE", result[n+1] = {0};
if(n>0 && strlen(source)>0 && n<=strlen(source))
find(source, result, 3);
}
5、分解成质因数(如435234=251*17*17*3*2,据说是华为笔试题)
void prim(int m, int n)
{
if(m>n)
{
while(m%n != 0) n++;
m /= n;
prim(m, n);
printf("%d*", n);
}
}
int main(int argc, char* argv[]) {
int n = 435234;
printf("%d=", n);
prim(n, 2);
}
6、寻找迷宫的一条出路,o:通路; X:障碍。(大家经常谈到的一个小算法题)
#define MAX_SIZE 8
int H[4] = {0, 1, 0, -1};
int V[4] = {-1, 0, 1, 0};
char Maze[MAX_SIZE][MAX_SIZE] = {{'X','X','X','X','X','X','X','X'},
{'o','o','o','o','o','X','X','X'},
{'X','o','X','X','o','o','o','X'},
{'X','o','X','X','o','X','X','o'},
{'X','o','X','X','X','X','X','X'},
{'X','o','X','X','o','o','o','X'},
{'X','o','o','o','o','X','o','o'},
{'X','X','X','X','X','X','X','X'}};
void FindPath(int X, int Y) {
if(X == MAX_SIZE || Y == MAX_SIZE) {
for(int i = 0; i < MAX_SIZE; i++)
for(int j = 0; j < MAX_SIZE; j++)
printf("%c%c", Maze[j], j < MAX_SIZE-1 ? ' ' : '\n');
}else for(int k = 0; k < 4; k++)
if(X >= 0 && Y >= 0 && Y < MAX_SIZE && X < MAX_SIZE && 'o' == Maze[X][Y]) {
Maze[X][Y] = ' ';
FindPath(X+V[k], Y+H[k]);
Maze[X][Y] ='o';
}
}
int main(int argc, char* argv[]) {
FindPath(1,0);
}
7、随机分配座位,共50个学生,使学号相邻的同学座位不能相邻(早些时候用C#写的,没有用C改写)。
static void Main(string[] args)
{
int Tmp = 0, Count = 50;
int[] Seats = new int[Count];
bool[] Students = new bool[Count];
System.Random RandStudent=new System.Random();
Students[Seats[0]=RandStudent.Next(0,Count)]=true;
for(int i = 1; i < Count; ) {
Tmp=(int)RandStudent.Next(0,Count);
if((!Students[Tmp])&&(Seats[i-1]-Tmp!=1) && (Seats[i-1] - Tmp) != -1) {
Seats[i++] = Tmp;
Students[Tmp] = true;
}
}
foreach(int Student in Seats)
System.Console.Write(Student + " ");
System.Console.Read();
}
8、求网格中的黑点分布。现有6*7的网格,在某些格子中有黑点,已知各行与各列中有黑点的点数之和,请在这张网格中画出黑点的位置。(这是一网友提出的题目,说是他笔试时遇到算法题)
#define ROWS 6
#define COLS 7
int iPointsR[ROWS] = {2, 0, 4, 3, 4, 0}; // 各行黑点数和的情况
int iPointsC[COLS] = {4, 1, 2, 2, 1, 2, 1}; // 各列黑点数和的情况
int iCount, iFound;
int iSumR[ROWS], iSumC[COLS], Grid[ROWS][COLS];
int Set(int iRowNo) {
if(iRowNo == ROWS) {
for(int iColNo=0; iColNo < COLS && iSumC[iColNo]==iPointsC[iColNo]; iColNo++)
if(iColNo == COLS-1) {
printf("\nNo.%d:\n", ++iCount);
for(int i=0; i < ROWS; i++)
for(int j=0; j < COLS; j++)
printf("%d%c", Grid[j], (j+1) % COLS ? ' ' : '\n');
iFound = 1; // iFound = 1,有解
}
} else {
for(int iColNo=0; iColNo < COLS; iColNo++) {
if(iPointsR[iRowNo] == 0) {
Set(iRowNo + 1);
} else if(Grid[iRowNo][iColNo]==0) {
Grid[iRowNo][iColNo] = 1;
iSumR[iRowNo]++; iSumC[iColNo]++; if(iSumR[iRowNo]<iPointsR[iRowNo] && iSumC[iColNo]<=iPointsC[iColNo])
Set(iRowNo);
else if(iSumR[iRowNo]==iPointsR[iRowNo] && iRowNo < ROWS)
Set(iRowNo + 1);
Grid[iRowNo][iColNo] = 0;
iSumR[iRowNo]--;
iSumC[iColNo]--;
}
}
}
return iFound; // 用于判断是否有解
}
int main(int argc, char* argv[]) {
if(!Set(0))
printf("Failure!");
}
9、有4种面值的邮票很多枚,这4种邮票面值分别1, 4, 12, 21,现从多张中最多任取5张进行组合,求取出这些邮票的最大连续组合值。(据说是华为2003年校园招聘笔试题)
#define N 5
#define M 5
int k, Found, Flag[N];
int Stamp[M] = {0, 1, 4, 12, 21};
// 在剩余张数n中组合出面值和Value
int Combine(int n, int Value) {
if(n >= 0 && Value == 0) {
Found = 1;
int Sum = 0;
for(int i=0; i<N && Flag != 0; i++) {
Sum += Stamp[Flag];
printf("%d ", Stamp[Flag]);
}
printf("\tSum=%d\n\n", Sum);
}else for(int i=1; i<M && !Found && n>0; i++)
if(Value-Stamp >= 0) {
Flag[k++] = i;
Combine(n-1, Value-Stamp);
Flag[--k] = 0;
}
return Found;
}
int main(int argc, char* argv[]) {
for(int i=1; Combine(N, i); i++, Found=0);
}
10、大整数数相乘的问题。(这是2002年在一考研班上遇到的算法题)
void Multiple(char A[], char B[], char C[]) {
int TMP, In=0, LenA=-1, LenB=-1;
while(A[++LenA] != '\0');
while(B[++LenB] != '\0');
int Index, Start = LenA + LenB - 1;
for(int i=LenB-1; i>=0; i--) {
Index = Start--;
if(B != '0') {
for(int In=0, j=LenA-1; j>=0; j--) {
TMP = (C[Index]-'0') + (A[j]-'0') * (B - '0') + In;
C[Index--] = TMP % 10 + '0';
In = TMP / 10;
}
C[Index] = In + '0';
}
}
}
int main(int argc, char* argv[]) {
char A[] = "21839244444444448880088888889";
char B[] = "38888888888899999999999999988";
char C[sizeof(A) + sizeof(B) - 1];
for(int k=0; k<sizeof(C); k++)
C[k] = '0';
C[sizeof(C)-1] = '\0';
Multiple(A, B, C);
for(int i=0; C != '\0'; i++)
printf("%c", C);
}
11、求最大连续递增数字串(如“ads3sl456789DF3456ld345AA”中的“456789”)
int GetSubString(char *strSource, char *strResult) {
int iTmp=0, iHead=0, iMax=0;
for(int Index=0, iLen=0; strSource[Index]; Index++) {
if(strSource[Index] >= '0' && strSource[Index] <= '9' &&
strSource[Index-1] > '0' && strSource[Index] == strSource[Index-1]+1) {
iLen++; // 连续数字的长度增1
} else { // 出现字符或不连续数字
if(iLen > iMax) {
iMax = iLen; iHead = iTmp;
}
// 该字符是数字,但数字不连续
if(strSource[Index] >= '0' && strSource[Index] <= '9') {
iTmp = Index;
iLen = 1;
}
}
}
for(iTmp=0 ; iTmp < iMax; iTmp++) // 将原字符串中最长的连续数字串赋值给结果串
strResult[iTmp] = strSource[iHead++];
strResult[iTmp]='\0';
return iMax; // 返回连续数字的最大长度
}
int main(int argc, char* argv[]) {
char strSource[]="ads3sl456789DF3456ld345AA", char strResult[sizeof(strSource)];
printf("Len=%d, strResult=%s \nstrSource=%s\n",
GetSubString(strSource, strResult), strResult, strSource);
}
12、四个工人,四个任务,每个人做不同的任务需要的时间不同,求任务分配的最优方案。(2005年5月29日全国计算机软件资格水平考试——软件设计师的算法题)。
#include "stdafx.h"
#define N 4
int Cost[N][N] = { {2, 12, 5, 32}, // 行号:任务序号,列号:工人序号
{8, 15, 7, 11}, // 每行元素值表示这个任务由不同工人完成所需要的时间
{24, 18, 9, 6},
{21, 1, 8, 28}};
int MinCost=1000;
int Task[N], TempTask[N], Worker[N];
void Assign(int k, int cost) {
if(k == N) {
MinCost = cost;
for(int i=0; i<N; i++)
TempTask = Task;
} else {
for(int i=0; i<N; i++) {
if(Worker==0 && cost+Cost[k] < MinCost) { // 为提高效率而进行剪枝
Worker = 1; Task[k] = i;
Assign(k+1, cost+Cost[k]);
Worker = 0; Task[k] = 0;
}
}
}
}
int main(int argc, char* argv[]) {
Assign(0, 0);
printf("最佳方案总费用=%d\n", MinCost);
for(int i=0; i<N; i++)
printf("\t任务%d由工人%d来做:%d\n", i, TempTask, Cost[TempTask]);
}
13、八皇后问题,输出了所有情况,不过有些结果只是旋转了90度而已。(回溯算法的典型例题,是数据结构书上算法的具体实现,大家都亲自动手写过这个程序吗?)
#define N 8
int Board[N][N];
int Valid(int i, int j) { // 判断下棋位置是否有效
int k = 1;
for(k=1; i>=k && j>=k;k++)
if(Board[i-k][j-k]) return 0;
for(k=1; i>=k;k++)
if(Board[i-k][j]) return 0;
for(k=1; i>=k && j+k<N;k++)
if(Board[i-k][j+k]) return 0;
return 1;
}
void Trial(int i, int n) { // 寻找合适下棋位置
if(i == n) {
for(int k=0; k<n; k++) {
for(int m=0; m<n; m++)
printf("%d ", Board[k][m]);
printf("\n");
}
printf("\n");
} else {
for(int j=0; j<n; j++) {
Board[j] = 1;
if(Valid(i,j))
Trial(i+1, n);
Board[j] = 0;
}
}
}
int main(int argc, char* argv[]) {
Trial(0, N);
}
14、实现strstr功能,即在父串中寻找子串首次出现的位置。(笔试中常让面试者实现标准库中的一些函数)
char * strstring(char *ParentString, char *SubString) {
char *pSubString, *pPareString;
for(char *pTmp=ParentString; *pTmp; pTmp++) {
pSubString = SubString;
pPareString = pTmp;
while(*pSubString == *pPareString && *pSubString != '\0') {
pSubString++;
pPareString++;
}
if(*pSubString == '\0') return pTmp;
}
return NULL;
}
int main(int argc, char* argv[]) {
char *ParentString = "happy birthday to you!";
char *SubString = "birthday";
printf("%s",strstring(ParentString, SubString));
}
15、现在小明一家过一座桥,过桥的时候是黑夜,所以必须有灯。现在小明过桥要1分,小明的弟弟要3分,小明的爸爸要6分,小明的妈妈要8分,小明的爷爷要12分。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30分就会熄灭。问小明一家如何过桥时间最短?(原本是个小小智力题,据说是外企的面试题,在这里用程序来求解)
#include "stdafx.h"
#define N 5
#define SIZE 64
// 将人员编号:小明-0,弟弟-1,爸爸-2,妈妈-3,爷爷-4
// 每个人的当前位置:0--在桥左边, 1--在桥右边
int Position[N];
// 过桥临时方案的数组下标; 临时方案; 最小时间方案;
int Index, TmpScheme[SIZE], Scheme[SIZE];
// 最小过桥时间总和,初始值100;每个人过桥所需要的时间
int MinTime=100, Time[N]={1, 3, 6, 8, 12};
// 寻找最佳过桥方案。Remnant:未过桥人数; CurTime:当前已用时间;
// Direction:过桥方向,1--向右,0--向左
void Find(int Remnant, int CurTime, int Direction) {
if(Remnant == 0) { // 所有人已经过桥,更新最少时间及方案
MinTime=CurTime;
for(int i=0; i<SIZE && TmpScheme>=0; i++)
Scheme = TmpScheme;
} else if(Direction == 1) { // 过桥方向向右,从桥左侧选出两人过桥
for(int i=0; i<N; i++)
if(Position == 0 && CurTime + Time < MinTime) {
TmpScheme[Index++] = i;
Position = 1;
for(int j=0; j<N; j++) {
int TmpMax = (Time > Time[j] ? Time : Time[j]);
if(Position[j] == 0 && CurTime + TmpMax < MinTime) {
TmpScheme[Index++] = j;
Position[j] = 1;
Find(Remnant - 2, CurTime + TmpMax, !Direction);
Position[j] = 0;
TmpScheme[--Index] = -1;
}
}
Position = 0;
TmpScheme[--Index] = -1;
}
} else { // 过桥方向向左,从桥右侧选出一个人回来送灯
for(int j=0; j<N; j++) {
if(Position[j] == 1 && CurTime+Time[j] < MinTime) {
TmpScheme[Index++] = j;
Position[j] = 0;
Find(Remnant+1, CurTime+Time[j], !Direction);
Position[j] = 1;
TmpScheme[--Index] = -1;
}
}
}
}
int main(int argc, char* argv[]) {
for(int i=0; i<SIZE; i++) // 初始方案内容为负值,避免和人员标号冲突
Scheme = TmpScheme = -1;
Find(N, 0, 1); // 查找最佳方案
printf("MinTime=%d:", MinTime); // 输出最佳方案
for(int i=0; i<SIZE && Scheme>=0; i+=3)
printf(" %d-%d %d", Scheme, Scheme[i+1], Scheme[i+2]);
printf("\b\b ");
}
16、2005年11月金山笔试题。编码完成下面的处理函数。函数将字符串中的字符'*'移到串的前部分,前面的非'*'字符后移,但不能改变非'*'字符的先后顺序,函数返回串中字符'*'的数量。如原始串为:ab**cd**e*12,处理后为*****abcde12,函数并返回值为5。(要求使用尽量少的时间和辅助空间)
算法如下:
int change(char *str)
{
int i=strlen(str);
for(int j=strlen(str)-1; j>=0; j--)
{
if(str[j]!='*')
{
i--;
swap(str[j],str[i]);
}
}
return i;
}
17、2005年11月15日华为软件研发笔试题。实现一单链表的逆转。
#include "stdafx.h"
typedef char eleType; // 定义链表中的数据类型
typedef struct listnode { // 定义单链表结构
eleType data;
struct listnode *next;
}node;
node *create(int n) { // 创建单链表,n为节点个数
node *p = (node *)malloc(sizeof(node));
node *head = p; head->data = 'A';
for(int i='B'; i<'A'+n; i++) {
p = (p->next = (node *)malloc(sizeof(node)));
p->data = i;
p->next = NULL;
}
return head;
}
void print(node *head) { // 按链表顺序输出链表中元素
for(; head; head = head->next)
printf("%c ", head->data);
printf("\n");
}
node *reverse(node *head, node *pre) // 逆转单链表函数。这是笔试时需要写的最主要函数
{
node *p=head->next;
head->next = pre;
if(p) return reverse(p, head);
else return head;
}
int main(int argc, char* argv[]) {
node *head = create(6);
print(head);
head = reverse(head, NULL);
print(head);
}
18、编码实现字符串转整型的函数(实现函数atoi的功能),据说是神州数码笔试题。如将字符串 ”+123”?123, ”-0123”?-123, “123CS45”?123, “123.45CS”?123, “CS123.45”?0
#include "stdafx.h"
int str2int(const char *str) { // 字符串转整型函数
int i=0, sign=1, value = 0;
if(str==NULL) return NULL; // 空串直接返回 NULL
if(str[0]=='-' || str[0]=='+') { // 判断是否存在符号位
i = 1;
sign = (str[0]=='-' ? -1 : 1);
}
for(; str>='0' && str<='9'; i++) // 如果是数字,则继续转换
value = value * 10 + (str - '0');
return sign * value;
}
int main(int argc, char *argv[]) {
char *str = "-123.45CS67";
int val = str2int(str);
printf("str=%s\tval=%d\n", str, val);
}
19、歌德巴赫猜想。任何一个偶数都可以分解为两个素数之和。(其实这是个C二级考试的模拟试题)
#include "stdafx.h"
#include "math.h"
int main(int argc, char* argv[]) {
int Even=78, Prime1, Prime2, Tmp1, Tmp2;
for(Prime1=3; Prime1<=Even/2; Prime1+=2) {
for(Tmp1=2,Tmp2=sqrt(float(Prime1)); Tmp1<=Tmp2 && Prime1%Tmp1 != 0; Tmp1++);
if(Tmp1<=Tmp2) continue;
Prime2 = Even-Prime1;
for(Tmp1=2,Tmp2=sqrt(float(Prime2)); Tmp1<=Tmp2 && Prime2%Tmp1 != 0; Tmp1++);
if(Tmp1<=Tmp2) continue;
printf("%d=%d+%d\n", Even, Prime1, Prime2);
}
}
20、快速排序(东软喜欢考类似的算法填空题,又如堆排序的算法等)
#include "stdafx.h"
#define N 10
int part(int list[], int low, int high) { // 一趟排序,返回分割点位置
int tmp = list[low];
while(low<high) {
while(low<high && list[high]>=tmp) --high;
list[low] = list[high];
while(low<high && list[low]<=tmp) ++low;
list[high] = list[low];
}
list[low] = tmp;
return low;
}
void QSort(int list[], int low, int high) { // 应用递归进行快速排序
if(low<high) {
int mid = part(list, low, high);
QSort(list, low, mid-1);
QSort(list, mid+1, high);
}
}
void show(int list[], int n) { // 输出列表中元素
for(int i=0; i<n; i++)
printf("%d ", list);
printf("\n");
}
int main(int argc, char* argv[]) {
int list[N] = {23, 65, 26, 1, 6, 89, 3, 12, 33, 8};
show(list, N); // 输出排序前序列
QSort(list, 0, N-1); // 快速排序
show(list, N); // 输出排序后序列
}
21、2005年11月23日慧通笔试题:写一函数判断某个整数是否为回文数,如12321为回文数。可以用判断入栈和出栈是否相同来实现(略微复杂些),这里是将整数逆序后形成另一整数,判断两个整数是否相等来实现的。
#include "stdafx.h"
int IsEchoNum(int num)
{
int tmp = 0;
for(int n = num; n; n/=10)
tmp = tmp *10 + n%10;
return tmp==num;
}
int main(int argc, char* argv[]) {
int num = 12321;
printf("%d %d\n", num, IsEchoNum(num));
}
22、删除字符串中的数字并压缩字符串(神州数码以前笔试题),如字符串”abc123de4fg56”处理后变为”abcdefg”。注意空间和效率。(下面的算法只需要一次遍历,不需要开辟新空间,时间复杂度为O(N))
#include "stdafx.h"
void delNum(char *str) {
int i, j=0;
// 找到串中第一个数字的位子
for(i=j=0; str && (str<'0' || str>'9'); j=++i);
// 从串中第一个数字的位置开始,逐个放入后面的非数字字符
for(; str; i++)
if(str<'0' || str>'9')
str[j++] = str;
str[j] = '\0';
}
int main(int argc, char* argv[]) {
char str[] = "abc123ef4g4h5";
printf("%s\n", str);
delNum(str);
printf("%s\n", str);
}
23、求两个串中的第一个最长子串(神州数码以前试题)。如"abractyeyt","dgdsaeactyey"的最大子串为"actyet"。
#include "stdafx.h"
char *MaxSubString(char *str1, char *str2) {
int i, j, k, index, max=0;
for(i=0; str1; i++)
for(j=0; str2[j]; j++) {
for(k=0; str1[i+k]==str2[j+k] && (str2[i+k] || str1[i+k]); k++);
if(k>max) { // 出现大于当前子串长度的子串,则替换子串位置和程度
index = j; max = k;
}
}
char *strResult = (char *)calloc(sizeof(char), max+1);
for(i=0; i<max; i++)
strResult = str2[index++];
return strResult;
}
int main(int argc, char* argv[]) {
char str1[] = "abractyeyt", str2[] = "dgdsaeactyey";
char *strResult = MaxSubString(str1, str2);
printf("str1=%s\nstr2=%s\nMaxSubString=%s\n", str1, str2, strResult);
}
24、不开辟用于交换数据的临时空间,如何完成字符串的逆序(在技术一轮面试中,有些面试官会这样问)
#include "stdafx.h"
void change(char *str)
{
for(int i=0,j=strlen(str)-1; i<j; i++, j--){
str[i]=str[i] ^str[j];
str[j] =str[i] ^str[j];
str[i]=str[i] ^str[j];
}
}
互换a,b的值:
a=a^b; b=a^b; a=a^b
位运算是C语言的一大特色,利用异或运算可以实现交换两个数,原理是一个整数与另外一个数进行两次异或运算仍然是其本身,基本原理用式子表达如下:
(1) A ^ A = 0;
(2) A = A ^B;
(3) B = A ^B;(相当于B = A ^ B ^ B ,即 B = A)
(4) A= A ^ B;(相当于A = A ^B ^A ,即A = B)
利用位运算不仅提高了代码的执行速度,而且此处还减少了对辅助变量的需求,因此提高了程序的效率。
25、删除串中指定的字符(做此题时,千万不要开辟新空间,否则面试官可能认为你不适合做嵌入式开发)
#include "stdafx.h"
void delChar(char *str, char c) {
int i, j=0;
for(i=0; str; i++)
if(str!=c) str[j++]=str;
str[j] = '\0';
}
int main(int argc, char* argv[]) {
char str[] = "abcdefgh"; // 注意,此处不能写成char *str = "abcdefgh";
printf("%s\n", str);
delChar(str, 'c');
printf("%s\n", str);
}
26、判断单链表中是否存在环(网上说的笔试题)
#include "stdafx.h"
typedef char eleType; // 定义链表中的数据类型
typedef struct listnode { // 定义单链表结构
eleType data;
struct listnode *next;
}node;
node *create(int n) { // 创建单链表,n为节点个数
node *p = (node *)malloc(sizeof(node));
node *head = p; head->data = 'A';
for(int i='B'; i<'A'+n; i++) {
p = (p->next = (node *)malloc(sizeof(node)));
p->data = i;
p->next = NULL;
}
return head;
}
void addCircle(node *head, int n) { // 增加环,将链尾指向链中第n个节点
node *q, *p = head;
for(int i=1; p->next; i++) {
if(i==n) q = p;
p = p->next;
}
p->next = q;
}
int isCircle(node *head) // 这是笔试时需要写的最主要函数,其他函数可以不写
{
node *p=head,*q=head;
while( q && q->next) {
p = p->next;
q=q->next->next;
if (p == q)
return 1;
}
if(q==NULL||q->next==NULL)
return 0;
}
int main(int argc, char* argv[]) {
node *head = create(12);
addCircle(head, 8); // 注释掉此行,连表就没有环了
printf("%d\n", isCircle(head));
}