# GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11844    Accepted Submission(s): 4465

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

Output
For each test case, print the number of choices. Use the format in the example.

Sample Input

21 3 1 5 11 11014 1 14409 9

Sample Output

Case 1: 9Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>

using namespace std;
typedef long long ll;
const int N = 100300;
const int INF = 0x3f3f3f3f;

int solve(int n,int r){
vector<int>p;
for(int i=2; i*i<=n; ++i)
if(n%i == 0){
p.push_back (i);
while(n%i == 0)
n /= i;
}
if(n > 1)
p.push_back(n);

int sz = p.size();
int sum = 0;
for(int i=1; i<(1<<sz); ++i){
int mult = 1,bits = 0;
for (int j=0; j<sz; ++j)
if (i&(1<<j)) {
++bits;
mult *= (ll)p[j];
}

int cur = r/mult;
if (bits % 2 == 1)  sum += cur;
else  sum -= cur;
}

return r - sum;
}

int main()
{
int T,cas = 0;
scanf("%d",&T);
while( T-- ){
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k == 0) {printf("Case %d: %d\n",++cas,0);continue;}
int t1 = b/k;
int t2 = d/k;
if( t1 > t2 ) swap(t1,t2);
ll sum = 0;
for( int i = 1 ; i <= t1 ; ++i ) sum += (ll)solve(i,t1);
sum++; sum /= 2;

for( int i = t1+1 ; i <= t2 ; ++i ) sum += (ll)solve(i,t1);

printf("Case %d: %lld\n",++cas,sum);
}
return 0;
}


11-02 108

04-14 126
01-08 865
03-12 80
04-19 877
03-27 277
01-30 200
12-06 77
02-20 412
09-27 100
04-03 1128
03-23 535