10分钟搞懂Tensorflow 逻辑回归实现手写识别

1.1. 逻辑回归原理

1.1.1. 逻辑回归

在现实生活中,我们遇到的数据大多数都是非线性的,因此我们不能用上一章线性回归的方法来进行数据拟合。但是我们仍然可以从线性模型着手开始第一步,首先对输入的数据进行加权求和。

线性模型:z=wx+bz=wx+b

其中w我们称为“权重”,b为偏置量(bias),xx为输入的样本数据,三者均为向量的形式。
我们先在二分类中来讨论,假如能创建一个模型,如果系统输出1,我们认为是第一类,如果系统输出0,我们认为是第二类,这种输出需求有点像阶跃函数(海维塞德阶跃函数),但是阶跃函数是间断函数,y的取值在x=0处突然跳跃到1,在实际的建模中,我们很难在模型中处理这种情况,所以我们使用Sigmoid函数来代替阶跃函数。

这里写图片描述

Sigmoid函数是激活函数其中的一种,当x=0时,函数值为0.5,随着x的增大,对应的Sigmoid值趋近1,而随着x的减小,Sigmoid值趋近0。通过这个函数,我们可以得到一系列0—1之间的数值,接着我们就可以把大于0.5的数据分为1类,把小于0.5的数据分为0类。
这里写图片描述
这种方式等价于是一种概率估计,我们把y看作服从伯努利分布,在给定x条件下,求解每个yi为1或0的概率。此时,逻辑回归这个抽象的名词,在这里我们把它转化成了能够让人容易理解的概率问题。接着通过最大对数似然函数估计w值,就解决问题了。
yi等于1的概率为:
这里写图片描述
yi等于0的概率为:
这里写图片描述
以上对Sigmoid函数描述可以看出该函数多用于二分类,而我们会经常遇到多分类问题,这时,Softmax函数的就派上用场了。

Softmax函数:
Softmax函数也是激活函数的一种,主要用于多分类,把输入的线性模型当成幂指数求值,最后把输出值归一化为概率,通过概率来把对象分类,而每个对象之间是不相关的,所有的对象的概率之和为1。
托福培训对于Softmax函数,如果j=2的话,Softmax和Sigmoid是一样的,同样解决的是二分类问题,这时用两种函数都能进行很好的二分类。

这里写图片描述

以上公式可以理解为,样本为类别ii的概率。即:

这里写图片描述

对于Softmax回归模型的解释,在这里引用一下别人的图,一张图片就胜过千言万语。

这里写图片描述
如果写成多项式,可以是这样:

这里写图片描述

如果换成我们常用的矩阵的形式,可以是这样:

这里写图片描述

1.1.2. 损失函数

在线性回归中,我们定义了一个由和方差组成的损失函数,并使该函数最小化来找到θ的最优解。同样的,在逻辑回归中我们也需要定义一个函数,通过最小化这个函数来解得我们的权重w值和偏差b值。在机器学习中,这种函数可以看做是表示一个模型的好坏的指标,这种指标可以叫做成本函数(Cost)或损失函数(Loss),然后最小化这两种函数,这两种方式都是一样的。

这里介绍一个常见的损失函数——“交叉熵”,在后面的实例代码中我们会用到。雅思培训交叉熵产生于信息论里面的信息压缩编码技术,后来慢慢演变成从博弈论到机器学习等其他领域的重要技术,它用来衡量我们的预测用于描述真相的低效性。它的定义如下:

这里写图片描述

它是怎么推导出来的呢,我们先来讨论一下Sigmoid的损失函数,接着再来对比理解。在上面的二分类中问题中,我们使用Sigmoid函数,同时我们也假定预测值yi服从伯努利分布,则yi等于1的概率为:

这里写图片描述

yi等于0的概率为:

这里写图片描述

则概率密度函数为:

这里写图片描述

上式中的ylabel是样本为类别1的实际概率。接着我们取对数似然函数,然后最小化似然函数进行参数估计(这里省略似然函数和一系列文字)。
而我们把问题泛化为多分类时,同样可以得出我们的概率密度函数:

这里写图片描述

我们对概率密度取自然对数的负数,就得到了我们的似然函数,即我们这里称为交叉熵的函数,其中yi是样本为类别i的预测概率mylabel是样本为类别i的实际概率。

这里写图片描述

最后,通过最小化该交叉熵,找出最优的w和b值。

1.2. 实例:手写识别系统

了解了逻辑回归的工作原理以后,现在我们用tensorflow来实现一个手写识别系统。首先我们必须去挖掘一些数据,我们使用现成的MNIST数据集,它是机器学习入门级的数据集,它包含各种手写数字图片和每张图片对应的标签,即图片对应的数字(0~9)。你可以通过一段代码把它下载下来,在下载之前记得安装python-mnist:

这里写图片描述

下载下来的数据总共有60000行的训练数据集(mnist.train),和10000行的测试数据集(mnist.test),同时我们把图片设为x,x是一个shape=[None,784]的一个张量,None表示任意长度,比如它可以小于或等于mnist.train里面的60000张图片。另外,每一张图片包含28像素X28像素,向量长度为28*28=789,表示图片是由784维向量空间的点组成的。然后,我们把图片的标签设为y_张量,shape=[None,10],这个y_的值就是图片原本对应的标签(0~9的数字)。

这里写图片描述

用代码来表示可以参考:

这里写图片描述

数据都准备好以后,就开始训练我们的模型了。之前我们讲了Softmax函数,用该函数来做逻辑回归,我们可以通过这样的代码来表示:

但是Tensorflow已经实现好了这个Softmax函数,即:tf.nn.softmax_cross_entropy_with_logits(),而无需我们自己这样定义(-tf.reduce_sum(y_ * tf.log(y)))。为什么使用Tensorflow的呢,是因为我们在使用该函数的时候,可能会出现数值不稳定的问题,需要自己在Softmax函数中加一些trick,这样做起来比较麻烦,又把模型复杂化了,所以我们推荐使用Tensorflow自带的交叉熵函数,它会帮你处理数值不稳定的问题。

-tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
逻辑回归确定好各项函数后,我们还是用梯度下降的方式去寻找那个最优的w和b值,最后,整个手写图片识别系统的代码如下:

这张图片的实际数字是: 3预测值为:
[[ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]]
读者可以通过改变不同的图片来试试预测的结果,可以看出上面的预测情况还是很不错的。但是我们模型的性能到底如何,还是需要数据来说话,测试性能的代码如下:

这个结果真的不怎么样,不过我们可以通过采用其他算法和模型来改进我们的性能。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值