数模作为高含金量的商科比赛,是保研er需要关注的重点。数模竞赛的亮眼成绩,在夏令营中绝对是加分项。如果能在美赛获得M奖及以上,可以充实和丰富简历,向老师展示自己的数学水平~对于大三即将保研的同学,今年美赛是在明年夏令营前能拿到结果的最后一场数模比赛。对于大一、大二的同学,则更有时间对美赛进行较为充分的准备,拿下不错的成绩!
01 团队成员及顾问团队成员
01 团队成员
一个团队最多可以由目前就读于同一所学校的三名。学校可以注册的团队数量没有限制。比赛面向所有本科生和高中生开放。顾问必须完成每个团队的注册过程。
02 团队顾问
团队所在机构的任何教职员工或学生都可以担任顾问的角色。顾问将作为团队的主要联系人,不必来自数学系。我们鼓励教职员工担任团队顾问;但是,学校的一名团队成员或另一名学生可以担任顾问。
02 报名费用
报名费MCM/ICM的注册费为每队100美元,即约725人民币,3人团队每人大概分担240元。
03 2024新变化
注册流程已简化,分为两部分:顾问注册和团队注册。
MCM/ICM竞赛现在有25页的限制。25 页的限制适用于整个提交,包括摘要表、解决方案、参考列表、目录、注释、附录、代码和任何问题特定要求。
在COMAP竞赛中使用大型语言模型和生成式AI 工具。但需在报告中明确指出LLM或其他AI工具的使用情况,包括是哪种模型被使用以及用于什么目的,且在25页的解决方案之后需附加AI使用情况报告。
04 历年美赛情况分析
题目设置美赛共有两个赛道,
MCM(Mathematical Contest in Modeling)和ICM(The Interdisciplinary Contest in Modeling),每个赛道3个问题,共6题可供选择。
MCM 偏理工,需要数学与计算机能力,相对门槛更高也更加硬核;ICM偏社科,更需要逻辑分析与写作能力,题目对商科同学相对比较友好。A题很多涉及物理化学问题,有一定专业限制;B题相对稍好,对建模能力要求较高;C题会给出大量数据,适合数据分析能力强的同学;D、E、F相对友好,其中F题又被大家戏称为语文建模,但也可能会有一些摸不着头脑的问题。通常商科同学会倾向于C、D、E、F题,但也并不是绝对,只要题目有思路有想法都可以一做。值得一提的是,如果挑选一个和专业较为相关的话题,可以作为一篇较好的数模论文,丰富充实自己的简历内容。
获奖情况大家最关心的奖项环节!美赛共设置5等奖项,通常来说M奖及以上是比较有竞争力的成绩,能够在简历中成为一项亮点。统计2020到2023年MCM/ICM获奖比例,基本每年有O奖0.2%,F奖2%,M奖7%,H奖22%,S奖65%,并且MCM和ICM获奖比例是相对一致的,不太存在更容易获奖的情况。如果大家去官网查询历年获奖队伍,会发现很多F奖、O奖团队都来自于中国高校。一方面说明大学生对美赛热情高涨,另一方面也说明各位小伙伴也很有希望取得好成绩!
05 如何准备美赛
队友选择通常3人队友配置:建模+编程+写论文,其中建模和编程比较重要。尽早找队友!否则靠谱有能力的同学就被别的队拉走啦。尽量选择熟悉的+有责任心的同学,否则到时候很可能面临一个人爆肝的情况。
学习模型列举一些数学建模中常见的模型:层次分析法、熵权法、模糊综合评价、蒙特卡罗模型、多元线性回归、拟合算法、分类模型、聚类模型、时间序列ARIMA模型、微分方程模型、粒子群算法模型、神经网络模型、规划模型、排队模型。要注意的是,切勿堆砌模型,要适当应用,如果生搬硬套不如不用。可以上网搜集一些课程,有时间可以购买数模书籍阅读。推荐掌握的软件有MATLAB、Python,但是其实很多软件都可以搭建模型,比如lingo、R、stata等等,优先考虑使用的熟练度。
论文撰写美赛论文包括摘要、问题重述分析、模型假设、模型建立、模型求解、模型分析、模型检验等部分。
有以下几点注意事项:英文撰写。通常大家的做法是先用软件翻译一遍,比如谷歌翻译,然后再自行修改,英文表达地道得体也是一个加分项。排版。负责写论文的同学最好提前学习latex,是一款十分方便实用的word排版语言,涉及一些较为简单的编程操作。数据可视化。美赛尤其注重数据的呈现,漂亮得体的作图必不可少。数据可视化的过程中尽量简洁清晰,让人眼前一亮,美观大方的图表是美赛一项较为重要的加分项。可以参考往年O奖论文来贴近作图风格。此外,在比赛前一定要多看O奖论文,在模型、写作、作图方面都进行模仿学习。掌握评委老师的偏好,才能够在美赛中取得亮眼的成绩。
数据网站美赛查找数据也是重大难题。除了C题会给予大量数据(甚至电脑跑不动),其他题目都要小伙伴自行搜集,而数据的质量很大程度上影响了最后模型运行的结果,因此找数据是美赛的重中之重。
以下罗列了一些常用的国际数据网站,建议收藏起来!
世界银行:
http://data.worldbank.org/
世界银行中文版:
http://www.worldbank.org.cn/Chinese
世界贸易组织:
http://www.wto.org/
美国统计局官方网站:
http://www.census.gov/
美国商务部官方网站:
http://www.stat-usa.gov/
美国劳工部网站:
http://www.bls.gov/data/home.htm
世界发展指标网站:
http://genderstats.worldbank.org/dataonline/
国际清算银行:
http://www.bis.org/statistics/index.htm
联合国统计网:
http://unstats.un.org/unsd/default.htmOECD
国民核算资料:
http://www.bis.org/statistics/index.htm
能源技术数据交换(ETDE)与能源数据库:http://www.etde.org
加拿大统计局:
http://www.bls.gov
英国统计局(国民核算指南):
http://www40.statcan.ca/l01/cst01/
爱尔兰中央统计办公室:
http://www.destatis.de/themen/e/thm_volksw.htm
瑞典统计局:
http://www.cso.ie/statistics/natio