人工神经网络(ANN)是一种受大脑启发的信息处理模式。就像人类一样,ANN通过示例来学习。通过学习过程,ANN被配置用于特定应用,例如模式识别或数据分类。学习过程主要涉及调整神经元之间存在的突触连接。

大脑由数千亿个称为神经元的细胞组成。这些神经元通过突触连接在一起,突触只不过是一个神经元可以向另一个神经元发送冲动的连接。当一个神经元向另一个神经元发送兴奋性信号时,该信号将被添加到该神经元的所有其他输入中。如果它超过给定的阈值,那么它将导致目标神经元向前发射动作信号——这就是思考过程内部的工作方式。
在计算机科学中,我们通过使用矩阵在计算机上创建 “网络” 来模拟这个过程。这些网络可以理解为神经元的抽象,而没有考虑所有生物复杂性。为简单起见,我们只对一个简单的 NN 进行建模,其中两层能够解决线性分类问题。

假设我们有一个问题,我们想在给定一组输入和输出作为训练示例的情况下预测输出,如下所示:
训练数据如下:

预测下面数据:

请注意,输出与第三列直接相关,即输入3的值是图2中每个训练示例中的输出。因此,对于测试示例,输出值应为1。
训练过程包括以下步骤:
- 前向传播:
获取输入,乘以权重(仅使用随机数作为权重)
设Y = WiIi = W1I1+W2I2+W3I3 - 通过 sigmoid 公式传递结果以计算神经元的输出。Sigmoid 函数用于在 0 和 1 之间标准化结果:
1/1 + e-y - 反向传播
计算误差,即实际输出和预期输出之间的差值。根据误差,通过将误差乘以输入,然后再次乘以 S 形曲线的梯度来调整权重:
权重 += 误差输入输出(1-输出),这里输出(1-输出)是S形曲线的导数。
注意:重复整个过程进行几千次迭代。
让我们用Python编写整个过程的代码。我们将使用Numpy库来帮助我们轻松完成矩阵上的所有计算。您需要在系统上安装numpy库才能运行代码
Command 来安装 numpy:
sudo apt -get install python-numpy
# Python program to implement a
# single neuron neural network
# import all necessary libraries
from numpy import exp, array, random, dot, tanh
# Class to create a neural
# network with single neuron
class NeuralNetwork():
def __init__(self):
# Using seed to make sure it'll
# generate same weights in every run
random.seed(1)
# 3x1 Weight matrix
self.weight_matrix = 2 * random.random((3, 1)) - 1
# tanh as activation function
def tanh(self, x):
return tanh(x)
# derivative of tanh function.
# Needed to calculate the gradients.
def tanh_derivative(self, x):
return 1.0 - tanh(x) ** 2
# forward propagation
def forward_propagation(self, inputs):
return self.tanh(dot(inputs, self.weight_matrix))
# training the neural network.
def train(self, train_inputs, train_outputs,
num_train_iterations):
# Number of iterations we want to
# perform for this set of input.
for iteration in range(num_train_iterations):
output = self.forward_propagation(train_inputs)
# Calculate the error in the output.
error = train_outputs - output
# multiply the error by input and then
# by gradient of tanh function to calculate
# the adjustment needs to be made in weights
adjustment = dot(train_inputs.T, error *
self.tanh_derivative(output))
# Adjust the weight matrix
self.weight_matrix += adjustment
# Driver Code
if __name__ == "__main__":
neural_network = NeuralNetwork()
print ('Random weights at the start of training')
print (neural_network.weight_matrix)
train_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
train_outputs = array([[0, 1, 1, 0]]).T
neural_network.train(train_inputs, train_outputs, 10000)
print ('New weights after training')
print (neural_network.weight_matrix)
# Test the neural network with a new situation.
print ("Testing network on new examples ->")
print (neural_network.forward_propagation(array([1, 0, 0])))
-python训练案例&spm=1001.2101.3001.5002&articleId=142896150&d=1&t=3&u=5668941653a1474888455055e38aad88)
334

被折叠的 条评论
为什么被折叠?



