二叉排序树、红黑树和平衡二叉树

二叉排序树

二叉排序树又称为二叉查找树。它要么是一棵空树,要么是具有下列性质的二叉树:

(1)若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值。

(2)若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值。

(3)它的左右子树也分别为二叉排序树。

二叉排序树的查找:通常使用递归的方法来查找,即先查找根结点,若关键字与根结点的值相等,则找到,若关键字小于该根结点的值,则在左子树中继续查找,若关键字大于该根结点的值,则在右子树中查找。

typedef struct BiTNode
{
    int data;                            //结点值
    struct BiTNode* lchild,*rchild;      //左右孩子指针
}BiTNode,*BiTree;
//查找:查找二叉排序树T中是否存在key
//指针f指向T的双亲,其初始值为NULL,若查找成功,则指针p指向该数据元素的结点,并返回TRUE,否则指针p指向查找路线上访问的最后一个结点并返回FALSE
bool SearchBST(BiTree T,int key,BiTree f,BiTree *p)
{
    //查找不成功
    if(!T)
    {
        *p = f;
        return false;
    }
    //查找成功
    else if(key == T->data)
    {
        *p = T;
        return true;
    }
    else if(key < T->data)
    {
        //如果key值小于当前根结点的值,则继续在左子树中查找
        return SearchBST(T->lchild,key,T,p);
    }
    else
    {
        //如果key值大于当前根结点的值,则继续在右子树中查找
        return SearchBST(T->rchild,key,T,p);
    }
}

 二叉排序树的插入:所谓的二叉树的插入,其实就是将关键字放到树中合适的位置而已。

//当二叉排序树T中不存在关键字等于key的数据时,插入key并返回TRUE,否则返回FALSE
bool InsertBST(BiTree* T,int key)
{
    BiTree p,s;
    //若查找不成功
    if(!SearchBST(*T,key,NULL,&p))
    {
        s = (BiTree)malloc(sizeof(BiTNode));
        s->data = key;
        s->lchild = NULL;
        s->rchild = NULL;
        if(!p)
        {
            *T = s;        //插入s为新的根结点
        }
        else if(key < p->data)
        {
            p->lchild = s;    //插入s为左孩子
        }
        else
        {
            p->rchild = s;    //插入s为右孩子
        }
        return true;
    }
    //若书中已有与关键字相同的结点,则插入失败
    else
    {
        return false;
    }
}

二叉排序树的删除:对于二叉树的删除,需要考虑的问题比较多,因为删除涉及到的问题很复杂,需要分三种情况考虑,即要删除的是叶子结点、要删除的结点只有左子树或只有右子树、要删除的结点左右子树都有。

对于要删除的结点只有左子树或只有右子树的情况,删除该结点后,将它的左子树或者右子树整个移动到删除了的结点的位置即可,可理解为“子承父业”。

对于要删除的结点左右子树都有的情况,解决方法比较麻烦。比较好的方法就是先找到要删除的结点p的直接前驱s,用s来替换结点p,然后再删除此结点s。

//删除
//若二叉排序树T中存在关键字等于key的数据元素,则删除该结点,并返回TRUE,否则返回FALSE
bool DeleteBST(BiTree* T,int key)
{
    //如果不存在关键字等于key的结点
    if(!*T)
    {
        return false;
    }
    else
    {
        if(key == (*T)->data)
        {
            return Delete(T);
        }
        //若关键字小于根结点的值
        else if(key < (*T)->data)
        {
            return DeleteBST(&(*T)->lchild,key);
        }
        else
        {
            return DeleteBST(&(*T)->rchild,key);
        }
    }
}
//从二叉排序树中删除结点p,并重新连接它的左右子树
bool Delete(BiTree* p)
{
    BiTree q,s;
    //如果右子树为空,则只需要重新连接它的左子树
    if((*p)->rchild == NULL)
    {
        q = *p;
        *p = (*p)->lchild;
        free(q);
    }
    //如果左子树为空,则只需要重新连接它的右子树
    if((*p)->lchild == NULL)
    {
        q = *p;
        *p = (*p)->rchild;
        free(q);
    }
    //左右子树均不空
    else
    {
        q = *p;
        s = (*p)->lchild;
        //转左,然后向右到尽头,找待删除结点的前驱
        while(s->rchild)
        {
            q = s;
            s = s->rchild;
        }
        (*p)->data = s->data;    //s指向被删除结点的直接前驱
        if(q != *p)
        {
            q->rchild = s->lchild;    //重新连接q的右子树
        }
        else
        {
            q->lchild = s->lchild;    //重新连接q的左子树
        }
        free(s);
    }
    return true;
}

总结:二叉排序树是以链接的方式存储,保持了链式存储结构在执行插入或删除操作时不用移动元素的优点,只要找到合适的插入和删除位置之后,仅需修改链接指针即可。插入删除的时间性能比较好,而对于二叉排序树的查找,走的就是从根结点到要查找的结点的路径,其比较次数等于关键字的结点在二叉排序树中的层数,至少为一次,最多也不会超过二叉树的深度。也就是说,二叉排序树的查找性能取决于二叉排序树中形状。如果二叉排序树是比较平衡的,即其深度与完全二叉树相同,均为\left \lfloor \log_{2}n \right \rfloor + 1,那么查找的时间复杂度也就为O(logn),近似于折半查找。

平衡二叉树(Self-Balancing Binary Search Tree 或 Height-Balanced Binary Search Tree)

平衡二叉树是一种特殊的二叉排序树,也可称AVL树,其中每一个结点的左子树和右子树的高度差至多为1。从平衡二叉树的英文名字可以看出,平衡二叉树是一种高度平衡的二叉排序树。意味着平衡二叉树要么是一棵空树,要么它的左子树和右子树都是平衡二叉树,且左子树和右子树的高度之差的绝对值不超过1。我们把二叉树上结点的左子树深度减去右子树深度的值称为平衡因子,那么平衡二叉树上所有结点的平衡因子只能是-1、0、1。也就是说,只要二叉树上有一个结点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。以距离插入结点最近的,平衡因子的绝对值大于1的结点为根结点的子树,称为最小不平衡树。

平衡二叉树的实现原理:平衡二叉树构建的基本思想就是在构建二叉排序树的过程中,每当插入一个结点时,先检查是否因插入而破坏了树的平衡性,如果是,则找出最小不平衡树。在保持二叉排序树特性的前提下,调整最小不平衡树中各结点之间的链接关系 ,进行相应的旋转,使之成为新的平衡子树。

平衡二叉树的实现算法:关于平衡二叉树的实现,需要注意的是左旋和右旋操作。所谓左旋,就是当某结点的平衡因子为-2时,将整个树进行逆时针旋转。右旋即指当某个结点的平衡因子为2时,将整个树进行顺时针旋转。

//树的结点结构
typedef struct BiTNode
{
    int data;                            //结点值
    int bf;                              //平衡因子
    struct NiTNode *lchild,*rchild;      //左右孩子指针
}BiTNode,*BiTree;
//右旋
void Right_Rotate(BiTree* p)
{
    BiTree L;
    L = (*p)->lchild;        //L指向p的左子树根结点
    (*p)->lchild = L->rchild;    //L的右子树挂接为p的左子树
    L->rchild = (*p);
    *p = L;                //p指向新的根结点
}
//左旋
void Right_Rotate(BiTree* p)
{
    BiTree R;
    R = (*p)->rchild;        //R指向p的右子树根结点
    (*p)->rchild = R->lchild;    //R的左子树挂接为p的右子树
    R->lchild = (*p);
    *p = R;                //p指向新的根结点
}

右旋代码解读:当传入一个二叉排序树p,将它的左孩子结点定义为L,将L的右子树变成p的左子树,再将p改成L的右子树,最后将L替换p成为根结点。这样就完成了一次右旋操作。

左旋代码解读:当传入一个二叉排序树p,将它的右孩子结点定义为R,将R的左子树变成p的右子树,再将p改成R的左子树,最后将R替换p成为根结点。这样就完成了一次左旋操作。

如果我们需要查找的集合本身没有顺序,在频繁查找的同时也需要经常的插入和删除操作,显然我们需要构建一棵二叉排序树,但是不平衡的二叉排序树查找效率是非常低的,因此我们需要在构建时就让这棵二叉排序树时平衡二叉树,此时的查找时间复杂度为O(logn),而插入和删除也为O(logn)。

红黑树

红黑树是一种二叉查找树,但是在每个结点增加一个存储位来表示结点的颜色,可以是红或黑。通过对任何一条从根到叶子结点的路径上各个结点着色的方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因此,红黑树是一种弱平衡二叉树,相对于要求严格的AVL树来说,它的旋转次数少,所以对于搜索、插入、删除操作较多的情况下,通常使用红黑树。

红黑树的性质:

(1)每个结点非红即黑。

(2)根结点是黑色的。

(3)每个叶子结点都是黑色的。

(4)如果一个结点是红色的,则它的子结点必须是黑色的。

(5)对于任意结点而言,其到叶子结点树的每条路径上都包含着相同数目的黑结点。

红黑树较AVL树的优点:AVL树是高度平衡的,频繁的插入和删除会引起频繁的热balance,导致效率下降;红黑树不是高度平衡的,算是一种折中,插入最多两次旋转,删除最多三次旋转。所以红黑树的查找、插入和删除的时间复杂度都是O(logn),且性能稳定,所以STL里面很多结构包括map底层实现都是使用的红黑树。

攀枝花学院本科学生课程设计任务书 题 目 二叉排序树平衡二叉树的实现 1、课程设计的目的 使学生进一步理解掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构操作实现算法,以及它们在程序中的使用方法。 使学生掌握软件设计的基本内容设计方法,并培养学生进行规范化软件设计的能力。 3) 使学生掌握使用各种计算机资料有关参考资料,提高学生进行程序设计的基本能力。 2、课程设计的内容要求(包括原始数据、技术要求、工作要求等) (1) (1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T; (2)对二叉排序树T作中序遍历,输出结果; (3)计算二叉排序树T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”; (5)用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; (6)计算平衡的二叉排序树BT的平均查找长度,输出结果。 3、主要参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社 4、课程设计工作进度计划 第1天 完成方案设计与程序框图 第2、3天 编写程序代码 第4天 程序调试分析结果 第5天 课程设计报告总结 指导教师(签字) 日期 年 月 日 教研室意见: 年 月 日 学生(签字): 接受任务时间: 年 月 日 注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表 题目名称 二叉排序树平衡二叉树的实现 评分项目 分值 得分 评价内涵 工作 表现 20% 01 学习态度 6 遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。 02 科学实践、调研 7 通过实验、试验、查阅文献、深入生产实践等渠道获取与课程设计有关的材料。 03 课题工作量 7 按期圆满完成规定的任务,工作量饱满。 能力 水平 35% 04 综合运用知识的能力 10 能运用所学知识技能去发现与解决实际问题,能正确处理实验数据,能对课题进行理论分析,得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献从事其他调研;能提出并较好地论述课题的实施方案;有收集、加工各种信息及获取新知识的能力。 06 设计(实验)能力,方案的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、操作等实验工作,数据正确、可靠;研究思路清晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机进行资料搜集、加工、处理辅助设计等。 08 对计算或实验结果的分析能力(综合分析能力、技术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果 质量 45% 09 插图(或图纸)质量、篇幅、设计(论文)规范化程度 5 符合本专业相关规范或规定要求;规范化符合本文件第五条要求。 10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。 11 创新 10 对前人工作有改进或突破,或有独特见解。 成绩 指导教师评语 指导教师签名: 年 月 日 摘要及关键字 本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。 二叉排序树(又称二叉查找树):(1)若左子树不空,则左子树上所有节点的值均小于它的根结点的值;(2)若右子树不空,则右子树上所有节点均大于它的根结点的值;(3)它的左右子树分别为二叉排序树。 二叉平衡树:若不是空树,则(1)左右子树都是平衡二叉树;(2)左右子树的深度之差的绝对值不超过1。 本次实验是利用二叉排序树平衡二叉树达到以下目的:(1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果; (4)输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”;(5)用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; (6)计算平衡的二叉排序树BT的平均查找长度,输出结果。 关键字:数列L,结点,二叉排序树,平衡二叉树        目录 摘要…………………………………………………………………………… 3 1 绪论………………………………………………………………………… 5 1.1 课程设计的目的…………………………………………………………… 5 1.2 相关知识的阐述…………………………………………………………… 5 1.2.1一位数组的存储结构…………………………………………………… 5 1.2.2建立二叉排序树……………………………………………………… 5 1.2.3中序遍历二叉树………………………………………………………… 5 1.2.4平均查找长度…………………………………………………………… 6 1.2.5平均二叉树(AVL树)…………………………………………………… 6 1.2.6平衡因子………………………………………………………………… 7 1.2.7平衡二叉树的调整方法…………………………………………………… 7 2 方案设计……………………………………………………………… 8 2.1 模块功能………………………………………………………………………8 3 算法设计…………………………………………………………………… 8 3.1 算法流程图…………………………………………………………………… 8 4 详细设计……………………………………………………………… 10 4.1 主程序………………………………………………………………… 10 4.2 定义二叉树结构……………………………………………………………… 11 4.3 建立二叉树…………………………………………………………………… 11 4.3.1二叉排序树的查找…………………………………………………………11 4.3.2二叉排序树的插入…………………………………………………………11 4.4 中序遍历…………………………………………………………………12 4.5 平均查找长度…………………………………………………………………12 4.6 删除节点…………………………………………………………………12 4.7 判断平衡二叉树……………………………………………………………… 13 5 调试分析………………………………………………………………………… 14 5.1 时间复杂度的分析………………………………………………………………14 5.2 运行结果………………………………………………………………… 14 5.3 结果分析………………………………………………………………… 15 6 课程设计总结…………………………………………………………………… 16 参考文献………………………………………………………………………… 17 1 绪论 1.1 课程设计的目的 (1)使学生进一步理解掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构操作实现算法,以及它们在程序中的使用方法。 (2)使学生掌握软件设计的基本内容设计方法,并培养学生进行规范化软件设计的能力。 (3)使学生掌握使用各种计算机资料有关参考资料,提高学生进行程序设计的基本能力。 1.2 相关知识的阐述 1.2.1 一维数组的存储结构 建立二插排序树,首先用一个一维数组记录下读入的数据,然后再用边查找边插入的方式将数据一一对应放在完全二叉树相应的位置,为空的树结点用“0” 补齐。 1.2.2 建立二叉排序树 二叉排序树是一种动态树表。其特点是:树的结构通常不是一次生成的,而是在查找过程中,当树中不存在关键字等于给定值的节点时再进行插入。新插入的结点一定是一个新添加的叶子节点,并且是查找不成功时查找路径上访问的最后一个结点的左孩子或右孩子结点。 插入算法: 首先执行查找算法,找出被插结点的父亲结点; 判断被插结点是其父亲结点的左、右儿子。将被插结点作为叶子结点插入; 若二叉树为空,则首先单独生成根结点。 注意:新插入的结点总是叶子结点。 1.2.3 中序遍历二叉树 中序遍历二叉树算法的框架是: 若二叉树为空,则空操作; 否则(1)中序遍历左子树(L); (2)访问根结点(V); (3)中序遍历右子树(R)。 中序遍历二叉树也采用递归函数的方式,先访问左子树2i,然后访问根结点i,最后访问右子树2i+1.先向左走到底再层层返回,直至所有的结点都被访问完毕。 1.2.4 平均查找长度 计算二叉排序树的平均查找长度时,采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。平均查找长度就等于s/i(i为树中结点的总个数)。  假设在含有n(n>=1)个关键字的序列中,i个关键字小于第一个关键字,n-i-1个关键字大于第一个关键字,则由此构造而得的二叉排序树在n个记录的查找概率相等的情况下,其平均查找长度为:          ASL(n,i)=[1+i*(P(i)+1)+(n-i-1)(P(n-i-1)+1)]/n 其中P(i)为含有i个结点的二叉排序树的平均查找长度,则P(i)+1为查找左子树中每个关键字时所用比较次数的平均值,P(n-i-1)+1为查找右子树中每个关键字时所用比较次数的平均值。又假设表中n个关键字的排列是“随机”的,即任一个关键字在序列中将是第1个,或第2个,…,或第n个的概率相同,则可对上式从i等于0至n-1取平均值。最终会推导出:          当n>=2时,ASL(n)<=2(1+1/n)ln(n) 由此可见,在随机的情况下,二叉排序树的平均查找长度log(n)是等数量级的。 另外,含有n个结点的二叉排序树其判定树不是惟一的。对于含有同样一组结点的表,由于结点插入的先后次序不同,所构成的二叉排序树的形态深度也可能不同。 而在二叉排序树上进行查找时的平均查找长度二叉树的形态有关:  ①在最坏情况下,二叉排序树是通过把一个有序表的n个结点依次插入而生成的,此时所得的二叉排序树蜕化为棵深度为n的单支树,它的平均查找长度单链表上的顺序查找相同,亦是(n+1)/2。  ②在最好情况下,二叉排序树在生成的过程中,树的形态比较匀称,最终得到的是一棵形态与二分查找的判定树相似的二叉排序树,此时它的平均查找长度大约是lgn。  ③插入、删除查找算法的时间复杂度均为O(lgn)。 1.2.5 平衡二叉树( AVL树 ) ①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。     ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。     ③平衡的二叉排序树指满足BST性质的平衡二叉树。     ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。 1.2.6 平衡因子 二叉树上任一结点的左子树深度减去右子树的深度称为该结点的平衡因子,易知平衡二叉树中所有结点的因子只可能为0,-11。 平衡二叉排序树的在平衡因子绝对值等于2时开始调整到绝对值为1或0,在平衡因子绝对值为2时,二叉排序树会出现四种不同的情况的树形,因此这时需要分别单独讨论来降低平衡因子。 1.2.7 平衡二叉树的调整方法   平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是,则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。具体步骤如下: (1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值均不超过1,则平衡二叉树没有失去平衡,继续插入结点; (2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点; (3)判断新插入的结点与最小不平衡子树的根结点的关系,确定是哪种类型的调整; (4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或LR型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突; (5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后的平衡二叉树中是否存在平衡因子大于1的结点。 2 方案设计 2.1 模块功能 1.建立二叉树:要求以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T。 2.中序遍历并输出结果:要求将第一步建立的二叉树进行中序遍历,并将结果输出。 3.平均查找长度并输出:要求计算二叉排序树T查找成功的平均查找长度,输出结果。 4.删除节点:要求输入元素x,查找二叉排序树T,若存在含x的结点,则删该结点,并作中序遍历(执行操作2);否则输出信息“无x”。 5.生成平衡二叉树:要求用数列L,生成平衡的二叉排序树BT:当插入新元素之后,发现当前的二叉排序树BT不是平衡的二叉排序树,则立即将它转换成新的平衡的二叉排序树BT; 6.平均查找长度:计算平衡的二叉排序树BT的平均查找长度,输出结果。 3 算法设计 3.1 算法流程图 建立二叉树流程图: YES NO 主程序流程图: 中序遍历流程图: 删除节点流程图: 4 详细设计 4.1 主程序 void main() { node T=NULL; int num; int s=0,j=0,i=0; int ch=0; node p=NULL; printf("请输入一组数字并输入0为结束符:"); do{ scanf("%d",&num); if(!num) printf("你成功完成了输入!\n"); else insertBST(&T,num); }while(num); printf("\n\n---操作菜单---\n"); printf("\n 0: 退出" ); printf("\n 1: 中序遍历"); printf("\n 2: 平均查找长度"); printf("\n 3: 删除"); printf("\n 4: 判断是否是平衡二叉树"); while(ch==ch) { printf("\n 选择操作并继续:"); scanf("%d",&ch); switch(ch){ case 0: exit(0); /*0--退出*/ case 1: printf(" 中序遍历结果是:\n "); inorderTraverse(&T); break; case 2: s=0;j=0;i=0; calculateASL(&T,&s,&j,i); printf(" ASL=%d/%d",s,j); break; case 3: printf(" 请输入你想删除的数字:"); scanf("%d",&num); if(searchBST(T,num,NULL,&p)) { T=Delete(T,num); printf(" 你已成功删除该数字!\n "); inorderTraverse(&T); else printf(" 没有你想要删除的节点 %d!",num); break; case 4: i=0; balanceBST(T,&i); if(i==0) printf(" OK!这是平衡二叉树!"); else printf(" NO!"); break; default: printf("你的输入有误!请重新输入!\n"); break; } } } 4.2 定义二叉树结构 #include typedef struct Tnode { int data; struct Tnode *lchild,*rchild; }*node,BSTnode; 4.3 建立二叉树 4.3.1 二叉排序树的查找 searchBST(node t,int key,node f,node *p){ /*在根指针t所指二叉排序树中递归地查找其关键字等于key的数据元素,若查找成功,则指针p指向该数据元素节点,并返回(1),否则指针p指向查找路径上访问的最后一个节点并返回(0),指针f指向t的双亲,其初始调用值为NULL*/ if(!t) {*p=f;return (0);} /*查找不成功*/ else if(key==t->data) {*p=t;return (1);} /*查找成功*/ else if(keydata) searchBST(t->lchild,key,t,p); /*在左子树中继续查找*/ else searchBST(t->rchild,key,t,p); /*在右子树中继续查找*/ } 4.3.2 二叉排序树的插入 insertBST(node *t,int key){ /*当二叉排序树t中不存在关键字等于key的数据元素时,插入key并返回(1),否则返回(0)*/ node p=NULL,s=NULL; if(!searchBST(*t,key,NULL,&p)) /*查找不成功 */ { s=(node)malloc(sizeof(BSTnode)); s->data=key; s->lchild=s->rchild=NULL; if(!p) *t=s; /*被插入节点*s为新的根节点*/ else if(keydata) p->lchild=s; /*被插节点*s为左孩子*/ else p->rchild=s; /*被插节点*s为右孩子*/ return (1); } else return (0); /*树中已有关键字相同的节点,不再插入*/ } 4.4 中序遍历 inorderTraverse(node *t) /*中序遍历*/ { if(*t){ if(inorderTraverse(&(*t)->lchild)) { printf("%d ",(*t)->data); if(inorderTraverse(&(*t)->rchild)); } } else return(1); } 4.5 平均查找长度 calculateASL(node *t,int *s,int *j,int i) /*计算平均查找长度*/ {if(*t){ i++; *s=*s+i; if(calculateASL(&(*t)->lchild,s,j,i)) { (*j)++; if(calculateASL(&(*t)->rchild,s,j,i)) {i--; return(1);} } } else return(1); } 4.6 删除节点 node Delete(node t,int key) { /*若二叉排序树t中存在关键字等于key的数据元素时,则删除该数据元素节点 */ node p=t,q=NULL,s,f; while(p!=NULL) { if(p->data==key) break; q=p; if(p->data>key) p=p->lchild; else p=p->rchild; } if(p==NULL) return t; if(p->lchild==NULL) { if(q==NULL) t=p->rchild; else if(q->lchild==p) q->lchild=p->rchild; else q->rchild=p->rchild; free(p); } else{ f=p; s=p->lchild; while(s->rchild) { f=s; s=s->rchild; } if(f==p) f->lchild=s->lchild; else f->rchild=s->lchild; p->data=s->data; free (s); } return t; } 4.7 判断平衡二叉树 int balanceBST(node t,int *i) /*判断平衡二叉树*/ { int dep1,dep2; if(!t) return(0); else { dep1=balanceBST(t->lchild,i); dep2=balanceBST(t->rchild,i); } if((dep1-dep2)>1||(dep1-dep2)dep2) return(dep1+1); else return(dep2+1); } 5 调试分析 5.1 时间复杂度的分析 为了保证二叉排序树的高度为lgn,从而保证然二叉排序树上实现的插入、删除查找等基本操作的时间复杂度为O(lgn)。 5.2 运行结果 图5.1.1 调试界面 在程序调试过程当中,编译时并没有报错,但是运行时总是出错,在查阅资料同学的帮助下,发现程序未对数组初始化。添加数组初始化代码: s=(node)malloc(sizeof(BSTnode)) 输入一组数列,以结0结束: 图5.2.2运行界面一 中序遍历: 图5.2.3运行界面二 计算平均查找长度 图5.2.4运行界面三 删除已有结点: 图5.2.5运行界面四 删除失败: 图5.2.6运行界面五 判断是否是平衡二叉树: 图5.2.7运行界面六 5.3 结果分析 通过运行程序严密的求证,运行结果无误,不过对于转换平衡二叉树平衡二叉树平均查找长度未能实现,同时也无法实现图像显示。 6 课程设计总结 在这一周的课程设计中,其实对我来说还是收获颇多。这不光提高了我的程序设计能力,更为我的就业增加了筹码。对我们来说,独立完成这样课程设计是比较困难,其中包括模块的组成分析模块功能的实现。最后我不得不从网上下载源程序,借助课本,困难地将几个模块串起来。最后终于完成了自己的课程设计。 这次实验中我也出现过一些比较严重的错误。在用一维数组顺序表结构编写程序时我错误的运用静态链表来实现函数功能。这是我对基本概念理解的模糊不清造成的。我原以为只要采用一维数组作为存储结构它就一定也是顺序表结构,而实质上这根本是两个不相干的概念。后来在同学的指点下我意识到自己的错误。不过收获也很不少。至少我又练习了运用静态链表来实现同样的功能,同时我也发现两者在很多函数上是互通的,只需稍作修改即可移植。 另外程序的不足之处是不能实现对0这个数字的存储,可以通过改变数字的存储结构方式来实现,如使用二叉链表来作为数据的存储结构,即可实现该功能。还有就是可能自己学的还不够,对于最后两个要求未能完成,不得不说这是自己学艺不精。 现在觉得以前我对数据结构的认识是那么的肤浅,因此我下定决心寒假一定好好的把数据结构复习一遍。而且本次课程设计不光增强了我程序调试的能力,还有在面对一个较大的程序要冷静,不要浮躁,先分析模块要实现的功能,再把模块划分,最后到一个一个得模块实现,并且要不断地练习,这样,一个大的程序对我来说将不成问题。 参考文献 [1]刘大有等,《数据结构》(C语言版),高等教育出版社 [2]严蔚敏等,《数据结构》(C语言版),清华大学出版社 [3]William Ford,William Topp,《Data Structure with C++》清华大学出版社 [4]苏仕华等,数据结构课程设计,机械工业出版社
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值