题目描述:
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。由于返回类型是整数,结果只保留整数部分,小数部分将被舍去 。
示例:
输入:x = 8 输出:2 解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
解题方法:二分法。直接先上代码:
public class MySqrt {
public static int mySqrt(int x) {
if (x < 2) {
return x;
}
int left = 1;
int right = x / 2;
while (left <= right) {
int middle = left + (right - left) / 2;
System.out.println("left = " + left + ", right = " + right + ", middle = " + middle);
// 使用 middle * middle 会溢出,所以改使用除法
if (x / middle > middle) {
// middle * middle < x
left = middle + 1;
} else if (x / middle < middle) {
// middle * middle > x
right = middle - 1;
} else {
return middle;
}
}
return right;
}
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
int x = 1000;
int result = mySqrt(x);
System.out.println("result = " + result);
long endTime = System.currentTimeMillis();
System.out.println("程序运行时间:" + (endTime - startTime) + "ms");
}
}
使用变量 left、right、middle 来进行处理。我们先处理 x = 0 和 x = 1 的情况,之后才算正式进入二分法处理。初始化 left = 1,right = x / 2,意味着最终的结果会在 1 ~ x / 2 的范围中产生,middle = (left + right)/ 2。然后去循环进行 middle * middle 与 x 的比较,如果 middle * middle > x,则说明结果会在 [left, middle) 范围内产生,然后给 right 赋值 middle -1,然后重新计算 middle 值,重新进行比较;如果 middle * middle < x,则说明结果会在 (middle, right] 范围内产生,然后给 left 赋值 middle + 1,然后重新计算 middle,重新进行比较;如果 middle * middle == x,则直接返回 middle 即可。如果对 x 处理完了之后也没有找到可以返回的 middle 值,则直接返回 right 即可,比如,当 x = 6 时,进行 2 次处理后各个值的情况为:left = 3, right = 2, middle = 3,此时并没有找到可直接返回的 middle 值,继续执行时发现循环条件已经不满足了,所以直接返回 right 即可。
除了二分法之外,还有一种投机取巧的方法。
public static int mySqrt2(int x) {
return (int)Math.sqrt(x);
}
1241

被折叠的 条评论
为什么被折叠?



