题目描述
共有 n 名小伙伴一起做游戏。小伙伴们围成一圈,按 顺时针顺序 从 1 到 n 编号。确切地说,从第 i 名小伙伴顺时针移动一位会到达第 (i+1) 名小伙伴的位置,其中 1 <= i < n ,从第 n 名小伙伴顺时针移动一位会回到第 1 名小伙伴的位置。
游戏遵循如下规则:
从第 1 名小伙伴所在位置开始 。
沿着顺时针方向数 k 名小伙伴,计数时需要包含起始时的那位小伙伴。逐个绕圈进行计数,一些小伙伴可能会被数过不止一次。
你数到的最后一名小伙伴需要离开圈子,并视作输掉游戏。
如果圈子中仍然有不止一名小伙伴,从刚刚输掉的小伙伴的 顺时针下一位小伙伴开始,回到步骤 2 继续执行。
否则,圈子中最后一名小伙伴赢得游戏。
给你参与游戏的小伙伴总数 n ,和一个整数 k ,返回游戏的获胜者。
示例
示例 1:
输入:n = 5, k = 2
输出:3
解释:游戏运行步骤如下:
- 从小伙伴 1 开始。
- 顺时针数 2 名小伙伴,也就是小伙伴 1 和 2 。
- 小伙伴 2 离开圈子。下一次从小伙伴 3 开始。
- 顺时针数 2 名小伙伴,也就是小伙伴 3 和 4 。
- 小伙伴 4 离开圈子。下一次从小伙伴 5 开始。
- 顺时针数 2 名小伙伴,也就是小伙伴 5 和 1 。
- 小伙伴 1 离开圈子。下一次从小伙伴 3 开始。
- 顺时针数 2 名小伙伴,也就是小伙伴 3 和 5 。
- 小伙伴 5 离开圈子。只剩下小伙伴 3 。所以小伙伴 3 是游戏的获胜者。
示例 2:
输入:n = 6, k = 5
输出:1
解释:小伙伴离开圈子的顺序:5、4、6、2、3 。小伙伴 1 是游戏的获胜者。
解题过程
思路及步骤
(1)典型的约瑟夫环的问题,可以认为是一个头尾闭合的循环队列;
(2)先将 n 个小伙伴按照 1 --> n 的顺序入队,队头元素为 1,队尾元素为 5;
(3)循环遍历队列,先将队头元素出队,判断当前计数器是否等于 0,若不等于 0,说明该位置的小伙伴需要参与下次计数,则将该小伙伴入队,即插入到队尾;若计数器等于 0,则说明该位置的小伙伴已经输了,需要离开圈子,同时将计数器重置为 k;
(4)每次循环需要将计数器减 1,而且需要特别注意的是必须得先对计数器进行减 1 操作,也就是前置的 --;
(5)当队列中只剩一个元素时停止循环,返回当前队头元素即可。
代码展示
public class FindTheWinner {
public int findTheWinner(int n, int k) {
// 初始化队列
Queue<Integer> queue = new LinkedList<>();
for(int i = 1; i <= n; ++i) {
queue.add(i);
}
// 计数器
int tmp = k;
// 剩余1位小伙伴则停止循环
while (queue.size() > 1) {
int num = queue.poll();
if (--tmp != 0){
// 不是当次的输家,从新入队
queue.add(num);
} else {
// 重置计数器
tmp = k;
}
}
return queue.peek();
}
public static void main(String[] args) {
FindTheWinner findTheWinner = new FindTheWinner();
System.out.println(findTheWinner.findTheWinner(5, 2));
}
}

1362

被折叠的 条评论
为什么被折叠?



