题目描述
给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。
示例
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:mat = [[1,2],[3,4]]
输出:[1,2,3,4]
解题过程
思路及步骤
(1)m * n 的二维矩阵, 总共有 m + n - 1 条对角线, 相邻的对角线的遍历方向不同;
(2)设对角线从上到下的编号为 [0,m + n − 2]。当 i 为偶数时, 遍历方向为从左下向右上遍历;当 i 为奇数时,遍历方向为从右上向左下遍历;
(3)当第 i 条对角线为从左下向右上遍历时, 即 i 为偶数时, 每次行索引减 1, 列索引加 1, 直到矩阵的边缘为止;
当 i < m 时, 此时对角线遍历的起点位置为 (i, 0);
当 i ≥ m 时,此时对角线遍历的起点位置为 (m − 1, i − m + 1);
(4)当第 i 条对角线为从右上向左下遍历时, 即 i 为奇数时, 每次行索引加 1, 列索引减 1, 直到矩阵的边缘为止;
当 i < n 时, 此时对角线遍历的起点位置为 (0, i);
当 i ≥ n 时,则此时对角线遍历的起点位置为 (i − n + 1, n − 1);
代码展示
public class FindDiagonalOrder {
/**
* 官方解答:
* m * n 的二维矩阵, 总共有 m + n - 1 条对角线, 相邻的对角线的遍历方向不同
* 设对角线从上到下的编号为 [0,m + n − 2]
* 当 i 为偶数时, 遍历方向为从左下向右上遍历;
* 当 i 为奇数时,遍历方向为从右上向左下遍历;
*
* 当第 i 条对角线为从左下向右上遍历时, 即 i 为偶数时, 每次行索引减 1, 列索引加 1, 直到矩阵的边缘为止;
* 当 i < m 时, 此时对角线遍历的起点位置为 (i, 0);
* 当 i ≥ m 时,此时对角线遍历的起点位置为 (m − 1, i − m + 1);
*
* 当第 i 条对角线为从右上向左下遍历时, 即 i 为奇数时, 每次行索引加 1, 列索引减 1, 直到矩阵的边缘为止;
* 当 i < n 时, 此时对角线遍历的起点位置为 (0, i);
* 当 i ≥ n 时,则此时对角线遍历的起点位置为 (i − n + 1, n − 1);
**/
public int[] findDiagonalOrder(int[][] mat) {
// 行
int m = mat.length;
// 列
int n = mat[0].length;
int[] result = new int[m * n];
int index = 0;
for (int i = 0; i < m + n - 1; i++) {
if (i % 2 == 0) {
// 第偶数条对角线
int row = 0;
int line = 0;
if (i < m) {
row = i;
}
if (i >= m) {
row = m - 1;
line = i - m + 1;
}
while (row >= 0 && line < n) {
result[index] = mat[row][line];
row--;
line++;
index++;
}
} else {
// 第奇数条对角线
int row = 0;
int line = 0;
if (i < n) {
line = i;
}
if (i >= n) {
row = i - n + 1;
line = n - 1;
}
while (row < m && line >= 0) {
result[index] = mat[row][line];
row++;
line--;
index++;
}
}
}
return result;
}
public static void main(String[] args) {
int[][] mat = {{1,2,3},
{4,5,6},
{7,8,9}};
int[] result = new FindDiagonalOrder().findDiagonalOrder(mat);
for (int i = 0; i < result.length; i++) {
System.out.printf("%2d", result[i]);
}
System.out.println();
}
}
输入:nums = [2,7,11,15], target = 9
404

被折叠的 条评论
为什么被折叠?



