【边缘检测】BDCN:Bi-Directional Cascade Network for Perceptual Edge Detection

CVPR 2019
Bi-Directional Cascade Network for Perceptual Edge Detection
github链接:https://github.com/pkuCactus/BDCN

背景:目前的边缘分割数据集,同时标注了目标级别的轮廓和其中的细节这两大部分,这种多尺度的轮廓就意味着边缘检测需要探索多尺度的表达(multi-scale)

现有工作也有较多的方法使用了多尺度:

  • HED 和 RCF 都使用了 CNN 中的中间层,底层可以预测细节,高层可以预测全局信息

现有方法的问题:

  • 上述那两种方式训练的话,每层都使用相同的监督信息并非最优的方法
  • 还有一种方法[31] 使用不同尺度的 canny 算子来弱化中间层的监督,但该方法只是使用了人眼选择的特定尺度而已

动机:为了更加全面的探索多尺度信息

做法:本文提出了

  • Scale Enhancement Module(SEM):由多个并行的不同膨胀率的卷积组成的模块
  • Bi-Direction Cascade Network:该网络用来实现高效的特定类别边界学习
    在 BDCN 的每层中,其特定的监督是由 bi-directional 结构来实现的,该结构把与其相邻的上层和下层的输出进行传送,也就是BDCN的每一层都是使用增量式的方式来预测
    BDCN组成方式:将SEM嵌入VGG-type的block中
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

由图4可以看出,不同ID Block检测出的边缘不同,越浅的 block 检测出的越细致,越深的 block 检测出的越大尺度。

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆呆的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值