机器学习笔试面试总结
文章平均质量分 99
呆呆的猫
爱发呆 爱抹茶 一直在路上
展开
-
机器学习笔试面试超详细总结(一)
1、判别模型和生成模型2、最大概率分词3、中文分词的基本方法4、CRF(条件随机场)的特点5、隐马尔可夫模型(HMM)时间复杂度及可以使用的数据集6、在二分类问题中的评价方案7、决策树特点8、过拟合9、异方差性10、Fisher线性判别函数/PCA11、参数估计算法12、Naive Bayesian(NB)分类模型,数据重复问题13、下列那个方法不可以对文本分类...原创 2018-10-07 20:22:15 · 39712 阅读 · 2 评论 -
机器学习笔试面试超详细总结(二)
51、概率和信息量的关系52、数据清理中,缺失值的处理方法53、统计模式分类问题54、语言模型0概率问题55、逻辑回归和多元回归分析的不同56、关于Word2Vec57、词向量58、二次准则函数的H-K算法比感知器的优势59、卷积之后特征图谱的大小60、矩阵计算效率61、数据过大时,那种梯度下降方法更好62、选择神经网络深度时,需要考虑哪些参数63、如何利用已有训...原创 2018-10-28 22:58:07 · 8767 阅读 · 1 评论 -
机器学习笔试面试超详细总结(三)
101、简述神经网络发展史102、数据不平衡问题103、深度学习常用方法104、深度学习常见问题汇总105、简述神经网络发展史106、常见的分类算法有哪些?107、常见的监督学习算法有哪些? 机器学习 ML基础 易108、SVM、AdaBoost、Boosting和Bagging109、神经网络中激活函数的真正意义?一个激活函数需要具有哪些必要的属性?还有哪些属性是好的属...原创 2018-11-02 22:43:12 · 8855 阅读 · 2 评论 -
机器学习笔试面试超详细总结(四)
151、Ridge回归、Lasso回归(坐标下降法求解)152、电影推荐系统是以下哪些的应用实例153、决策树是否可以用来聚类——可以154、什么方法最适合于在n维空间做异常点检测155、逻辑回归和多元回归分析的不同156、k折交叉验证中k的选择157、回归模型存在多重共线性,在不损失过多信息的情况下,可以进行什么操作158、评估模型之后,得出模型存在偏差,如何解决159、...原创 2018-11-02 22:43:27 · 6549 阅读 · 1 评论 -
卷积神经网络经典模型要点
卷积神经网络模型要点整理 二、AlexNet2012年ImageNet比赛分类任务的冠军,Top-5错误率为16.4%,让深度学习受到瞩目。该网络输入为227*227*3(原始数据为224*224*3,经过预处理变为227),由5个“卷积+relu+pooling”和3个全连接层构成。网络特点:使用1500多万个代标记的图像训练,两台GPU,训练的5-6天激活函数:Relu,防止梯度...原创 2018-10-12 09:43:10 · 14235 阅读 · 1 评论 -
python面试题
Python面试基础题小汇总1.Python是如何进行内存管理的?答:从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制一、对象的引用计数机制Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。引用计数增加的情况:1,一个对象分配一个新名称 2,将其放入一个容器中(如列表、元组或字典)引用计数减少的情况:1,使用del语句对...原创 2018-09-07 14:35:32 · 1079 阅读 · 0 评论 -
图像处理面试题
1、给定0-1矩阵,求连通域。(遇到过N次,笔试面试都有,最好做到能徒手hack代码或者伪代码。)2、写一个函数,求灰度图的直方图。3、写一个均值滤波(中值滤波)。4、写出高斯算子,Sobel算子,拉普拉斯算子等,以及它们梯度方向上的区别。5、常用的特征提取方法。6、常用的目标检测方法。7、常用的边缘提取方法。8、常用的插值方法。/9、常用的图像分割算法。1...原创 2018-10-07 20:16:22 · 14701 阅读 · 0 评论 -
牛客笔记
1、栈和队列的异同2、链表3、静态局部变量4、任何一个递归都可以转换成非递归的过程5、排列组合6、直线切分平面问题7、接口中可以声明什么8、如何判断数字是采用几进制表示9、数组指针和指针数组10、操作系统完成地址映射11、链式存储结构存储列表,地址要求连续与否12、重载运算符可以重载什么函数,重载前后性质不变13、中缀表达式转化为后缀表达式14、32!的计算结...原创 2018-09-07 14:33:55 · 826 阅读 · 0 评论
分享