PyTorch搭建循环神经网络(RNN)进行文本分类、预测及损失分析(对不同国家的语言单词和姓氏进行分类,附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言~~~

下面我们将使用循环神经网络训练来自18种起源于不同语言的数千种姓氏,并根据拼写方式预测名称的来源。

一、数据准备和预处理

总共有18个txt文件,并且对它们进行预处理,输出如下

部分预处理代码如下

from __future__ import unicode_literals, print_function, division
from io import open
import glob
import os

def findFiles(path): return glob.glob(path)

print(findFiles('data/names/*.txt'))

import unicodedata
import string

all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)

    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )


for filename in findFiles('data/names/*.txt'):
    category = os.path.splitext(os.path.basename(filename))[0]
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines

n_categories = len(all_categories)

 二、将名字转换为张量

现在已经整理好了所有数据集种的名字,这里需要将它们转换为张量以使用它们,为了表示单个字母,这里使用独热编码的方法

三、构建神经网络

在PyTorch种构建循环神经网络涉及在多个时间步长上克隆多个RNN层 的参数,RNN层保留了Hidden State和梯度,这些状态完全由PyTorch的计算图来自动完成维护,这意味我们只需要关心前馈网络而不需要关注反向传播

 四、训练RNN网络

训练该网络所需要做的是向他输入大量的数据,令其进行预测,然后告诉它是否有错误

每个训练的循环包含下面七个步骤

1:创建输入和目标Tensor

2:创建归零的初始Hidden State

3:输入一个字母

4:传递Hidden State给下一个字母输入

5:比较最终输出和目标

6:反向传播

7:返回输出和损失

平均损失如下

 

 五、绘制损失变化图像

绘制网络的历史损失变化,以显示网络学习情况 

可见随着训练次数的增加损失逐渐 梯度下降

 六、预测结果

为了了解网络在不同类别上的表现如何,这里将创建一个混淆矩阵,为每种实际语言指示网络猜测那种语言,结果如下图,可以从主轴上挑出一些亮点,以显示它猜错了哪些语言

可见中文/朝鲜语 西班牙语/意大利语会有混淆,网络预测希腊语名字十分准确,但是英语名字预测的很糟糕

 七、预测用户输入

大家可以输入任何希望预测的名字到模型中,网络会给出几个名字最有可能的语言类型

### 使用PyTorch构建RNN神经网络 为了使用PyTorch构建循环神经网络(RNN),可以遵循以下结构化的方法。首先,导入必要的库来支持模型建设、数据加载以及评估等功能[^1]。 ```python import torch from torch import nn import torch.nn.functional as F ``` 定义一个简单的RNN类继承自`nn.Module`,这是所有神经网络模块的基础类。在这个例子中,初始化函数设置了输入维度大小、隐藏层单元数量以及其他参数;前向传播方法指定了数据流经网络的方式: ```python class SimpleRNN(nn.Module): def __init__(input_dim, hidden_dim, layer_dim, output_dim): super(SimpleRNN, self).__init__() # 隐藏层数量 self.hidden_dim = hidden_dim # 层的数量 self.layer_dim = layer_dim # RNN层 self.rnn = nn.RNN(input_dim, hidden_dim, layer_dim, batch_first=True, nonlinearity='relu') # 全连接层 self.fc = nn.Linear(hidden_dim, output_dim) def forward(x): # 初始化隐状态 h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_() # 前向传递至RNN out, hn = rnn(x, h0.detach()) # 只取最后一个时刻的状态作为全连接层的输入 out = self.fc(out[:, -1, :]) return out ``` 创建随机数据集用于测试目的,这可以通过实现`__getitem__()``__len__()`方法来自定义数据集类完成[^2]。 最后一步是实例化上述定义好的RNN对象并训练它,在实际应用中还需要准备真实的数据集来进行有效的学习过程。
评论 78
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值