Python网络爬虫深度教程

以下是一份详细的Python网络爬虫开发教程,包含原理讲解、技术实现和最佳实践,分为多个章节进行系统化讲解:

Python网络爬虫深度教程

1、Python爬虫+JS逆向,进阶课程,破解难题

   https://pan.quark.cn/s/9ad78f3f7116

2、Python+大数据开发V5,黑马班助你就业无忧

   https://pan.quark.cn/s/79942bacd34a

3、传送资料库查询

   https://link3.cc/aa99

第一章 爬虫基础概念

1.1 网络爬虫定义

  • 自动化程序模拟浏览器行为
  • 通过HTTP协议获取网页数据
  • 解析提取有价值信息的工具

1.2 爬虫类型分类

类型特点典型应用场景
通用爬虫搜索引擎类大规模抓取Google/Baidu蜘蛛
聚焦爬虫特定领域定向抓取垂直领域数据采集
增量式爬虫只抓取更新内容新闻网站监控
深层网络爬虫处理需要登录/表单提交的页面企业数据采集

1.3 法律与道德规范

  • 遵守robots.txt协议
  • 控制访问频率(建议≥2秒/次)
  • 禁止抓取敏感数据(用户隐私、商业秘密)
  • 查看网站的服务条款(Terms of Service)

第二章 核心组件与技术栈

2.1 基础工具链

# 典型依赖库
import requests       # HTTP请求
from bs4 import BeautifulSoup  # HTML解析
import scrapy         # 爬虫框架
import selenium       # 浏览器自动化
import pandas as pd   # 数据存储

2.2 HTTP协议详解

# 请求方法示例
response = requests.get(url, headers=headers, params=params)
response = requests.post(url, data=form_data, cookies=cookies)

# 关键响应属性
status_code = response.status_code
content = response.content  # 二进制数据
text = response.text        # 解码后的文本
headers = response.headers

2.3 HTML解析技术对比

技术优点缺点适用场景
正则表达式灵活快速维护困难简单结构提取
BeautifulSoup易用性强性能一般中小规模解析
lxml解析速度快安装复杂大规模数据处理
XPath精准定位学习曲线陡峭复杂页面结构

第三章 实战开发流程

3.1 基础爬虫开发

import requests
from bs4 import BeautifulSoup
import csv

def basic_spider(url):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
        'Accept-Language': 'zh-CN,zh;q=0.9'
    }
    
    try:
        response = requests.get(url, headers=headers, timeout=10)
        response.raise_for_status()
        
        # 使用更精确的解析方式
        soup = BeautifulSoup(response.content, 'lxml')
        
        # 示例:提取所有新闻标题
        news_items = []
        for article in soup.select('div.article-list > article'):
            title = article.find('h2', class_='title').get_text(strip=True)
            link = article.find('a')['href']
            timestamp = article.find('time')['datetime']
            
            news_items.append({
                'title': title,
                'link': link,
                'timestamp': timestamp
            })
        
        # 保存数据
        with open('news.csv', 'w', newline='', encoding='utf-8') as f:
            writer = csv.DictWriter(f, fieldnames=['title', 'link', 'timestamp'])
            writer.writeheader()
            writer.writerows(news_items)
            
        return news_items
    
    except requests.exceptions.RequestException as e:
        print(f"请求异常: {str(e)}")
    except Exception as e:
        print(f"解析异常: {str(e)}")

3.2 高级技巧实现

# 使用Session保持状态
session = requests.Session()
session.get(login_url)  # 获取初始cookies

# 处理验证码
def handle_captcha(image_url):
    # 使用OCR库或第三方识别服务
    pass

# 动态页面处理(Selenium示例)
from selenium.webdriver import Chrome
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By

options = Options()
options.headless = True
driver = Chrome(options=options)

driver.get('https://dynamic-website.com')
dynamic_content = driver.find_element(By.CSS_SELECTOR, '.ajax-content').text

第四章 反爬机制与应对策略

4.1 常见反爬手段

  1. User-Agent检测
  2. IP频率限制
  3. 验证码验证
  4. 行为分析(鼠标轨迹、点击模式)
  5. 数据加密(字体加密、JS混淆)

4.2 破解方案实现

# IP代理池实现
import random

proxies = [
    'http://123.45.67.89:8080',
    'http://112.233.44.55:3128'
]

def get_with_proxy(url):
    proxy = {'http': random.choice(proxies)}
    return requests.get(url, proxies=proxy)

# 请求头随机化
from fake_useragent import UserAgent

headers = {
    'User-Agent': UserAgent().random,
    'Referer': 'https://www.google.com/',
    'Accept-Encoding': 'gzip, deflate, br'
}

第五章 Scrapy框架实战

5.1 项目创建

scrapy startproject movie_project
cd movie_project
scrapy genspider douban_movie movie.douban.com

5.2 核心组件配置

# settings.py配置
CONCURRENT_REQUESTS = 16
DOWNLOAD_DELAY = 2
DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml',
    'Accept-Language': 'zh-CN'
}
ITEM_PIPELINES = {
    'movie_project.pipelines.MoviePipeline': 300,
}

5.3 爬虫实现示例

import scrapy
from scrapy.loader import ItemLoader
from movie_project.items import DoubanMovieItem

class DoubanMovieSpider(scrapy.Spider):
    name = 'douban_movie'
    allowed_domains = ['movie.douban.com']
    start_urls = ['https://movie.douban.com/top250']
    
    custom_settings = {
        'FEED_FORMAT': 'csv',
        'FEED_URI': 'douban_top250.csv'
    }
    
    def parse(self, response):
        for movie in response.css('.item'):
            loader = ItemLoader(item=DoubanMovieItem(), selector=movie)
            loader.add_css('title', '.title::text')
            loader.add_css('rating', '.rating_num::text')
            loader.add_css('quote', '.inq::text')
            loader.add_css('link', 'a::attr(href)')
            yield loader.load_item()
        
        next_page = response.css('.next a::attr(href)').get()
        if next_page:
            yield response.follow(next_page, self.parse)

第六章 数据存储方案

6.1 多种存储方式对比

# CSV存储
import csv
with open('data.csv', 'w') as f:
    writer = csv.writer(f)
    
# MySQL存储
import pymysql
conn = pymysql.connect(host='localhost', user='root', database='scraping')
cursor = conn.cursor()

# MongoDB存储
from pymongo import MongoClient
client = MongoClient('mongodb://localhost:27017/')
db = client['scraping_db']

6.2 数据库管道示例

# pipelines.py
import pymongo

class MongoDBPipeline:
    def __init__(self, mongo_uri, mongo_db):
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db

    @classmethod
    def from_crawler(cls, crawler):
        return cls(
            mongo_uri=crawler.settings.get('MONGO_URI'),
            mongo_db=crawler.settings.get('MONGO_DATABASE')
        )

    def open_spider(self, spider):
        self.client = pymongo.MongoClient(self.mongo_uri)
        self.db = self.client[self.mongo_db]

    def close_spider(self, spider):
        self.client.close()

    def process_item(self, item, spider):
        self.db[spider.name].insert_one(dict(item))
        return item

第七章 性能优化策略

7.1 并发处理

# 使用asyncio
import aiohttp
import asyncio

async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main(urls):
    async with aiohttp.ClientSession() as session:
        tasks = [fetch(session, url) for url in urls]
        return await asyncio.gather(*tasks)

7.2 分布式架构

# 使用Scrapy-Redis
# settings.py
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
REDIS_URL = 'redis://localhost:6379'

# 启动多个爬虫实例
scrapy runspider myspider.py

第八章 数据分析基础

import pandas as pd
import matplotlib.pyplot as plt

# 数据加载
df = pd.read_csv('movie_data.csv')

# 数据分析示例
top10 = df.sort_values('rating', ascending=False).head(10)
plt.figure(figsize=(10,6))
plt.barh(top10['title'], top10['rating'])
plt.title('豆瓣电影TOP10评分')
plt.show()

最佳实践建议

  1. 遵守网站爬取频率限制(robots.txt中Crawl-delay)
  2. 使用指数退避策略处理失败请求
  3. 定期维护代理IP池和User-Agent列表
  4. 实现异常处理机制(超时、重试、断路器)
  5. 使用缓存机制减少重复请求
  6. 监控爬虫运行状态(成功率、数据质量)

常见问题解决方案

  1. 403禁止访问:检查请求头完整性,添加Referer
  2. 封IP问题:使用代理IP轮换
  3. 动态内容加载:结合Selenium或Splash
  4. 数据乱码问题:检测响应编码,强制转换编码
  5. 登录验证:使用Session保持状态,处理验证码

本教程涵盖从基础到进阶的爬虫开发技术,建议按照章节顺序实践操作,实际开发中请务必遵守相关法律法规和网站的使用条款。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值