【C语言刷LeetCode】883. 三维形体投影面积(E)

格 grid 中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1 立方体。

每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。

现在,我们查看这些立方体在 xy 、yz 和 zx 平面上的投影。

投影 就像影子,将 三维 形体映射到一个 二维 平面上。从顶部、前面和侧面看立方体时,我们会看到“影子”。

返回 所有三个投影的总面积 。

示例 1:

输入:[[1,2],[3,4]]
输出:17
解释:这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
示例 2:

输入:grid = [[2]]
输出:5
示例 3:

输入:[[1,0],[0,2]]
输出:8
 

提示:

n == grid.length == grid[i].length
1 <= n <= 50
0 <= grid[i][j] <= 50

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/projection-area-of-3d-shapes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

这道是简单题,难点在于读懂题意:

第一排就是数组grid[0] = [1,2] ==> 表示两个箱子高度分别是 1、2 ;

第二排就是数组grid[1] = [3,4] ==> 表示两个箱子高度分别是 3、4;

最后就是分别映射三个平面了

一个平面是求每一行的最大值加起来

一个平面是求每列的最大值加起来

还有一个是底面,这里有坑,因为有些位置没有放立方体,所以并不是直接 size * size, 而是要去遍历才知道。

int projectionArea(int** grid, int gridSize, int* gridColSize){
    int i, j;
    int ret = 0;
    int onemax = 0;
    int tnum = 0;
    
    for (i = 0; i < gridSize; i++) {
        onemax = 0;
        for (j = 0; j < gridSize; j++) {
            onemax = fmax(onemax, grid[i][j]);
            tnum += grid[i][j] > 0 ? 1 : 0;
        }
        ret += onemax;
    }

    for (j = 0; j < gridSize; j++) {
        onemax = 0;
        for (i = 0; i < gridSize; i++) {
            onemax = fmax(onemax, grid[i][j]);
        }
        ret += onemax;
    }

    ret += tnum;

    return ret;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值