【
格 grid 中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1 立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。
现在,我们查看这些立方体在 xy 、yz 和 zx 平面上的投影。
投影 就像影子,将 三维 形体映射到一个 二维 平面上。从顶部、前面和侧面看立方体时,我们会看到“影子”。
返回 所有三个投影的总面积 。
示例 1:
输入:[[1,2],[3,4]]
输出:17
解释:这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
示例 2:
输入:grid = [[2]]
输出:5
示例 3:
输入:[[1,0],[0,2]]
输出:8
提示:
n == grid.length == grid[i].length
1 <= n <= 50
0 <= grid[i][j] <= 50
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/projection-area-of-3d-shapes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
】
这道是简单题,难点在于读懂题意:
第一排就是数组grid[0] = [1,2] ==> 表示两个箱子高度分别是 1、2 ;
第二排就是数组grid[1] = [3,4] ==> 表示两个箱子高度分别是 3、4;
最后就是分别映射三个平面了
一个平面是求每一行的最大值加起来
一个平面是求每列的最大值加起来
还有一个是底面,这里有坑,因为有些位置没有放立方体,所以并不是直接 size * size, 而是要去遍历才知道。
int projectionArea(int** grid, int gridSize, int* gridColSize){
int i, j;
int ret = 0;
int onemax = 0;
int tnum = 0;
for (i = 0; i < gridSize; i++) {
onemax = 0;
for (j = 0; j < gridSize; j++) {
onemax = fmax(onemax, grid[i][j]);
tnum += grid[i][j] > 0 ? 1 : 0;
}
ret += onemax;
}
for (j = 0; j < gridSize; j++) {
onemax = 0;
for (i = 0; i < gridSize; i++) {
onemax = fmax(onemax, grid[i][j]);
}
ret += onemax;
}
ret += tnum;
return ret;
}