贪心算法的思想就是用局部的最优解,达到最后全局的最优解。贪心算法使用是有限制的,一个问题能不能使用贪心来做,往往我们要对其进行必要的证明。贪心算法策略具有无后向性,也就是当前阶段的状态确定之后,不受后面阶段状态的影响。
现在我们先将一个能使用贪心算法的问题——数列极差。
问题描述:在黑板上写了N个正整数作成的一个数列,进行如下操作:每一次擦去其中的两个数a和b,然后在数列中加入一个数a*b+1,如此下去直至黑板上剩下一个数,在所有按这种操作方式最后得到的数中,最大的max,最小的为min,则该数列的极差定义为M=max-min。
思路分析:例如数列2,4,6.按照极差的定义,我们算算这个数列的极差。他有三种情况:(2*4+1)*6+1=55,(4*6+1)*2+1=51,(6*2+1)*4+1=53.我们发现当先算两个较小的数是,得到的是最大值,当先算两个较大的数时&

贪心算法通过局部最优解寻找全局最优解,其策略无后向性。数列极差问题描述了在一系列正整数上进行特定操作,最终求得的最大值与最小值之差。逆序拷贝输入数组并使用堆排序求解,通过指针记录最大最小值的位置,避免重复使用。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



