第七章 Brown运动(2)
1.无界变差与Ito积分
无界变差,即对连续函数进行取点、分割、作和后得到的是一个无界量。对于 [ a , b ] [a,b] [a,b]上的实值函数 G G G,对 [ a , b ] [a,b] [a,b]进行分割 Δ : a = x 0 < x 1 < ⋯ < x n = b \Delta:a=x_0<x_1<\cdots<x_n=b Δ:a=x0<x1<⋯<xn=b,如果 sup Δ ∑ i = 1 n ∣ G ( x i ) − G ( x i − 1 ) ∣ < ∞ \sup\limits_\Delta\sum\limits_{i=1}^n|G(x_i)-G(x_{i-1})|<\infty Δsupi=1∑n∣G(xi)−G(xi−1)∣<∞,则称 G G G在 [ a , b ] [a,b] [a,b]上具有有界变差,否则称具有无界变差。
-
对于有界变差函数, ∫ a b f ( x ) d G ( x ) \int_a^b f(x)dG(x) ∫abf(x)dG(x)存在,这里
∫ a b f ( x ) d G ( x ) = ∑ i = 1 n f ( ξ i ) ( G ( x i ) − G ( x i − 1 ) ) = S n → S ( max ( x i − x i − 1 ) → 0 ) \int_a^bf(x)dG(x)=\sum_{i=1}^nf(\xi_i)(G(x_i)-G(x_{i-1}))=S_n\to S(\max(x_i-x_{i-1})\to 0) ∫abf(x)dG(x)=i=1∑nf(ξi)(G(xi)−G(xi−1))=Sn→S(max(xi−xi−1)→0)
对于任何一个划分都成立,且 ξ i \xi_i ξi是 [ x i − 1 , x i ] [x_{i-1},x_i] [xi−1,xi]上的任意一点。对于无界变差函数,这样的积分不存在,因为积分值依赖于区间上点的选取。 -
对于Brown运动 { B ( t ) ; t ≥ 0 } \{B(t);t\ge0\} {B(t);t≥0},几乎所有样本轨道都是连续、任何区间不单调、任何区间不可导的,且几乎所有轨道在任何区间上都不是有界变差。
典型实例是 ∫ 0 t B ( s ) d B ( s ) \int_0^t B(s)dB(s) ∫0tB(s)dB(s),如果取区间左端点,积分结果是 1 2 ( B ( t ) 2 − t ) \frac12(B(t)^2-t) 21(B(t)2−t);如果取区间右端点,则积分结果是 1 2 ( B ( t ) 2 + t ) \frac12(B(t)^2+t) 21(B(t)2+t)。将取区间左端点的取点作和方式,称作Ito积分。
Ito积分是定义积分
∫
0
t
f
(
s
)
d
B
(
s
)
\int_0^tf(s)dB(s)
∫0tf(s)dB(s)的,设
f
(
t
)
f(t)
f(t)是一个非随机有界变差函数,则Ito积分定义为
∫
0
t
f
(
s
)
d
B
(
s
)
=
B
(
t
)
f
(
t
)
−
∫
0
t
B
(
s
)
d
f
(
s
)
\int_0^t f(s)dB(s)=B(t)f(t)-\int_0^t B(s)df(s)
∫0tf(s)dB(s)=B(t)f(t)−∫0tB(s)df(s)
这里
∫
0
t
B
(
s
)
d
f
(
s
)
\int_0^tB(s)df(s)
∫0tB(s)df(s)是Brown运动关于
f
f
f的Riemann-Stieltjes积分。
2.Ito公式
Ito公式可以用于简化Ito积分的计算,假设
F
:
R
→
R
F:\R\to \R
F:R→R是关于变量
x
x
x的二次连续可微函数,那么
F
(
B
(
t
)
)
−
F
(
0
)
=
∫
0
t
F
′
(
B
(
s
)
)
d
B
(
s
)
+
1
2
∫
0
t
F
′
′
(
B
(
s
)
)
d
s
F(B(t))-F(0)=\int_0^t F'(B(s))dB(s)+\frac12\int_0^t F''(B(s))ds
F(B(t))−F(0)=∫0tF′(B(s))dB(s)+21∫0tF′′(B(s))ds
简写成
d
F
(
B
(
t
)
)
=
F
′
(
B
(
t
)
)
d
B
(
t
)
+
1
2
F
′
′
(
B
(
t
)
)
d
t
dF(B(t))=F'(B(t))dB(t)+\frac12F''(B(t))dt
dF(B(t))=F′(B(t))dB(t)+21F′′(B(t))dt
也可以改写成
∫
0
t
F
′
(
B
(
s
)
)
d
B
(
s
)
=
F
(
B
(
t
)
)
−
F
(
B
(
0
)
)
−
1
2
∫
0
t
F
′
′
B
(
s
)
d
s
\int_0^t F'(B(s))dB(s)=F(B(t))-F(B(0))-\frac12\int_0^t F''B(s)ds
∫0tF′(B(s))dB(s)=F(B(t))−F(B(0))−21∫0tF′′B(s)ds
与Newton-Leibniz公式比较,Ito公式多了一项
−
1
2
∫
0
t
F
′
′
(
B
(
s
)
)
d
s
-\frac12 \int_0^t F''(B(s))ds
−21∫0tF′′(B(s))ds,这是由于Brown的无界变差引起的,称作变差项。
对于二元函数
F
(
t
,
x
)
:
R
+
×
R
→
R
F(t,x):\R^+\times \R\to \R
F(t,x):R+×R→R,关于
t
t
t连续可微,关于
x
x
x二次连续可微,那么
F
(
t
,
B
(
t
)
)
=
F
(
0
,
0
)
+
∫
0
t
∂
∂
x
F
(
s
,
B
(
s
)
)
d
B
(
s
)
+
∫
0
t
∂
∂
s
F
(
s
,
B
(
s
)
)
d
s
+
1
2
∫
0
t
∂
2
∂
x
2
F
(
s
,
B
(
s
)
)
d
s
.
∫
0
t
∂
∂
x
F
(
s
,
B
(
s
)
)
d
B
(
s
)
=
F
(
t
,
B
(
t
)
)
−
F
(
0
,
0
)
−
∫
0
t
∂
∂
s
F
(
s
,
B
(
s
)
)
d
s
−
1
2
∫
0
t
∂
2
∂
x
2
F
(
s
,
B
(
s
)
)
d
s
.
\begin{aligned} F(t,B(t))=&F(0,0)+\int_0^t \frac{\partial }{\partial x}F(s,B(s))dB(s)+\\&\int_0^t \frac{\partial}{\partial s}F(s,B(s))ds+\frac12\int_0^t \frac{\partial ^2}{\partial x^2}F(s,B(s))ds.\\ \\ \int_0^t \frac{\partial }{\partial x}F(s,B(s))dB(s)=&F(t,B(t))-F(0,0)-\int_0^t \frac{\partial }{\partial s}F(s,B(s))ds-\\ &\frac12 \int_0^t \frac{\partial ^2}{\partial x^2}F(s,B(s))ds. \end{aligned}
F(t,B(t))=∫0t∂x∂F(s,B(s))dB(s)=F(0,0)+∫0t∂x∂F(s,B(s))dB(s)+∫0t∂s∂F(s,B(s))ds+21∫0t∂x2∂2F(s,B(s))ds.F(t,B(t))−F(0,0)−∫0t∂s∂F(s,B(s))ds−21∫0t∂x2∂2F(s,B(s))ds.
简写成
d
F
(
t
,
B
(
t
)
)
=
∂
∂
x
F
(
t
,
B
(
t
)
)
d
B
(
t
)
+
∂
∂
t
F
(
t
,
B
(
t
)
)
d
t
+
1
2
∂
2
∂
x
2
F
(
t
,
B
(
t
)
)
d
t
dF(t,B(t))=\frac\partial {\partial x}F(t,B(t))dB(t)+\frac\partial{\partial t}F(t,B(t))dt+\frac12\frac{\partial ^2}{\partial x^2}F(t,B(t))dt
dF(t,B(t))=∂x∂F(t,B(t))dB(t)+∂t∂F(t,B(t))dt+21∂x2∂2F(t,B(t))dt
特别地,对于某一类随机过程
X
(
t
)
X(t)
X(t),存在
d
X
(
t
)
=
a
X
(
t
)
d
t
+
b
X
(
t
)
d
B
(
t
)
dX(t)=a X(t)dt+b X(t)dB(t)
dX(t)=aX(t)dt+bX(t)dB(t),通常称之为随机微分方程,
a
a
a为其漂移系数,
b
b
b为其扩散系数。比如
X
(
t
)
=
e
α
t
+
β
B
(
t
)
X(t)=e^{\alpha t+\beta B(t)}
X(t)=eαt+βB(t),有:
X
(
t
)
=
e
α
t
+
β
B
(
t
)
=
1
+
(
α
+
β
2
2
)
∫
0
t
e
α
s
+
β
B
(
s
)
d
s
+
β
∫
0
t
e
α
s
+
β
B
(
s
)
d
B
(
s
)
=
X
(
0
)
+
(
α
+
β
2
2
)
∫
0
t
X
(
s
)
d
s
+
β
∫
0
t
X
(
s
)
d
B
(
s
)
即
d
X
(
t
)
=
(
α
+
β
2
2
)
X
(
t
)
d
t
+
β
X
(
t
)
d
B
(
t
)
具
有
漂
移
系
数
(
α
+
β
2
2
)
和
扩
散
系
数
β
\begin{aligned} X(t)=&e^{\alpha t+\beta B(t)}\\ =&1+(\alpha+\frac{\beta^2}{2})\int_0^t e^{\alpha s+\beta B(s)}ds+\beta \int_0^t e^{\alpha s+\beta B(s)}dB(s)\\ =&X(0)+(\alpha+\frac{\beta^2}2)\int_0^tX(s)ds+\beta\int_0^t X(s)dB(s)\\ 即\\ dX(t)=&(\alpha+\frac{\beta^2}2)X(t)dt+\beta X(t)dB(t)\\ &具有漂移系数(\alpha+\frac{\beta^2 }2)和扩散系数\beta \end{aligned}
X(t)===即dX(t)=eαt+βB(t)1+(α+2β2)∫0teαs+βB(s)ds+β∫0teαs+βB(s)dB(s)X(0)+(α+2β2)∫0tX(s)ds+β∫0tX(s)dB(s)(α+2β2)X(t)dt+βX(t)dB(t)具有漂移系数(α+2β2)和扩散系数β
- 如果 a , b a,b a,b是Lipschitz函数,即存在常数 A A A使得 ∣ a ( x ) − a ( y ) ∣ ≤ A ∣ x − y ∣ , ∣ b ( x ) − b ( y ) ∣ ≤ B ∣ X − y ∣ |a(x)-a(y)|\le A|x-y|,|b(x)-b(y)|\le B|X-y| ∣a(x)−a(y)∣≤A∣x−y∣,∣b(x)−b(y)∣≤B∣X−y∣,则存在一个连续随机过程 X \boldsymbol X X,使得除一个零概率事件外随机微分方程成立,且以概率1唯一。