11.第七章 Brown运动(2)

第七章 Brown运动(2)

1.无界变差与Ito积分

无界变差,即对连续函数进行取点、分割、作和后得到的是一个无界量。对于 [ a , b ] [a,b] [a,b]上的实值函数 G G G,对 [ a , b ] [a,b] [a,b]进行分割 Δ : a = x 0 < x 1 < ⋯ < x n = b \Delta:a=x_0<x_1<\cdots<x_n=b Δ:a=x0<x1<<xn=b,如果 sup ⁡ Δ ∑ i = 1 n ∣ G ( x i ) − G ( x i − 1 ) ∣ < ∞ \sup\limits_\Delta\sum\limits_{i=1}^n|G(x_i)-G(x_{i-1})|<\infty Δsupi=1nG(xi)G(xi1)<,则称 G G G [ a , b ] [a,b] [a,b]上具有有界变差,否则称具有无界变差。

  • 对于有界变差函数, ∫ a b f ( x ) d G ( x ) \int_a^b f(x)dG(x) abf(x)dG(x)存在,这里
    ∫ a b f ( x ) d G ( x ) = ∑ i = 1 n f ( ξ i ) ( G ( x i ) − G ( x i − 1 ) ) = S n → S ( max ⁡ ( x i − x i − 1 ) → 0 ) \int_a^bf(x)dG(x)=\sum_{i=1}^nf(\xi_i)(G(x_i)-G(x_{i-1}))=S_n\to S(\max(x_i-x_{i-1})\to 0) abf(x)dG(x)=i=1nf(ξi)(G(xi)G(xi1))=SnS(max(xixi1)0)
    对于任何一个划分都成立,且 ξ i \xi_i ξi [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi]上的任意一点。对于无界变差函数,这样的积分不存在,因为积分值依赖于区间上点的选取。

  • 对于Brown运动 { B ( t ) ; t ≥ 0 } \{B(t);t\ge0\} {B(t);t0},几乎所有样本轨道都是连续、任何区间不单调、任何区间不可导的,且几乎所有轨道在任何区间上都不是有界变差。

典型实例是 ∫ 0 t B ( s ) d B ( s ) \int_0^t B(s)dB(s) 0tB(s)dB(s),如果取区间左端点,积分结果是 1 2 ( B ( t ) 2 − t ) \frac12(B(t)^2-t) 21(B(t)2t);如果取区间右端点,则积分结果是 1 2 ( B ( t ) 2 + t ) \frac12(B(t)^2+t) 21(B(t)2+t)。将取区间左端点的取点作和方式,称作Ito积分。

Ito积分是定义积分 ∫ 0 t f ( s ) d B ( s ) \int_0^tf(s)dB(s) 0tf(s)dB(s)的,设 f ( t ) f(t) f(t)是一个非随机有界变差函数,则Ito积分定义为
∫ 0 t f ( s ) d B ( s ) = B ( t ) f ( t ) − ∫ 0 t B ( s ) d f ( s ) \int_0^t f(s)dB(s)=B(t)f(t)-\int_0^t B(s)df(s) 0tf(s)dB(s)=B(t)f(t)0tB(s)df(s)
这里 ∫ 0 t B ( s ) d f ( s ) \int_0^tB(s)df(s) 0tB(s)df(s)是Brown运动关于 f f f的Riemann-Stieltjes积分。

2.Ito公式

Ito公式可以用于简化Ito积分的计算,假设 F : R → R F:\R\to \R F:RR是关于变量 x x x的二次连续可微函数,那么
F ( B ( t ) ) − F ( 0 ) = ∫ 0 t F ′ ( B ( s ) ) d B ( s ) + 1 2 ∫ 0 t F ′ ′ ( B ( s ) ) d s F(B(t))-F(0)=\int_0^t F'(B(s))dB(s)+\frac12\int_0^t F''(B(s))ds F(B(t))F(0)=0tF(B(s))dB(s)+210tF(B(s))ds
简写成
d F ( B ( t ) ) = F ′ ( B ( t ) ) d B ( t ) + 1 2 F ′ ′ ( B ( t ) ) d t dF(B(t))=F'(B(t))dB(t)+\frac12F''(B(t))dt dF(B(t))=F(B(t))dB(t)+21F(B(t))dt
也可以改写成
∫ 0 t F ′ ( B ( s ) ) d B ( s ) = F ( B ( t ) ) − F ( B ( 0 ) ) − 1 2 ∫ 0 t F ′ ′ B ( s ) d s \int_0^t F'(B(s))dB(s)=F(B(t))-F(B(0))-\frac12\int_0^t F''B(s)ds 0tF(B(s))dB(s)=F(B(t))F(B(0))210tFB(s)ds
与Newton-Leibniz公式比较,Ito公式多了一项 − 1 2 ∫ 0 t F ′ ′ ( B ( s ) ) d s -\frac12 \int_0^t F''(B(s))ds 210tF(B(s))ds,这是由于Brown的无界变差引起的,称作变差项。

对于二元函数 F ( t , x ) : R + × R → R F(t,x):\R^+\times \R\to \R F(t,x):R+×RR,关于 t t t连续可微,关于 x x x二次连续可微,那么
F ( t , B ( t ) ) = F ( 0 , 0 ) + ∫ 0 t ∂ ∂ x F ( s , B ( s ) ) d B ( s ) + ∫ 0 t ∂ ∂ s F ( s , B ( s ) ) d s + 1 2 ∫ 0 t ∂ 2 ∂ x 2 F ( s , B ( s ) ) d s . ∫ 0 t ∂ ∂ x F ( s , B ( s ) ) d B ( s ) = F ( t , B ( t ) ) − F ( 0 , 0 ) − ∫ 0 t ∂ ∂ s F ( s , B ( s ) ) d s − 1 2 ∫ 0 t ∂ 2 ∂ x 2 F ( s , B ( s ) ) d s . \begin{aligned} F(t,B(t))=&F(0,0)+\int_0^t \frac{\partial }{\partial x}F(s,B(s))dB(s)+\\&\int_0^t \frac{\partial}{\partial s}F(s,B(s))ds+\frac12\int_0^t \frac{\partial ^2}{\partial x^2}F(s,B(s))ds.\\ \\ \int_0^t \frac{\partial }{\partial x}F(s,B(s))dB(s)=&F(t,B(t))-F(0,0)-\int_0^t \frac{\partial }{\partial s}F(s,B(s))ds-\\ &\frac12 \int_0^t \frac{\partial ^2}{\partial x^2}F(s,B(s))ds. \end{aligned} F(t,B(t))=0txF(s,B(s))dB(s)=F(0,0)+0txF(s,B(s))dB(s)+0tsF(s,B(s))ds+210tx22F(s,B(s))ds.F(t,B(t))F(0,0)0tsF(s,B(s))ds210tx22F(s,B(s))ds.
简写成
d F ( t , B ( t ) ) = ∂ ∂ x F ( t , B ( t ) ) d B ( t ) + ∂ ∂ t F ( t , B ( t ) ) d t + 1 2 ∂ 2 ∂ x 2 F ( t , B ( t ) ) d t dF(t,B(t))=\frac\partial {\partial x}F(t,B(t))dB(t)+\frac\partial{\partial t}F(t,B(t))dt+\frac12\frac{\partial ^2}{\partial x^2}F(t,B(t))dt dF(t,B(t))=xF(t,B(t))dB(t)+tF(t,B(t))dt+21x22F(t,B(t))dt
特别地,对于某一类随机过程 X ( t ) X(t) X(t),存在 d X ( t ) = a X ( t ) d t + b X ( t ) d B ( t ) dX(t)=a X(t)dt+b X(t)dB(t) dX(t)=aX(t)dt+bX(t)dB(t),通常称之为随机微分方程, a a a为其漂移系数, b b b为其扩散系数。比如 X ( t ) = e α t + β B ( t ) X(t)=e^{\alpha t+\beta B(t)} X(t)=eαt+βB(t),有:
X ( t ) = e α t + β B ( t ) = 1 + ( α + β 2 2 ) ∫ 0 t e α s + β B ( s ) d s + β ∫ 0 t e α s + β B ( s ) d B ( s ) = X ( 0 ) + ( α + β 2 2 ) ∫ 0 t X ( s ) d s + β ∫ 0 t X ( s ) d B ( s ) 即 d X ( t ) = ( α + β 2 2 ) X ( t ) d t + β X ( t ) d B ( t ) 具 有 漂 移 系 数 ( α + β 2 2 ) 和 扩 散 系 数 β \begin{aligned} X(t)=&e^{\alpha t+\beta B(t)}\\ =&1+(\alpha+\frac{\beta^2}{2})\int_0^t e^{\alpha s+\beta B(s)}ds+\beta \int_0^t e^{\alpha s+\beta B(s)}dB(s)\\ =&X(0)+(\alpha+\frac{\beta^2}2)\int_0^tX(s)ds+\beta\int_0^t X(s)dB(s)\\ 即\\ dX(t)=&(\alpha+\frac{\beta^2}2)X(t)dt+\beta X(t)dB(t)\\ &具有漂移系数(\alpha+\frac{\beta^2 }2)和扩散系数\beta \end{aligned} X(t)===dX(t)=eαt+βB(t)1+(α+2β2)0teαs+βB(s)ds+β0teαs+βB(s)dB(s)X(0)+(α+2β2)0tX(s)ds+β0tX(s)dB(s)(α+2β2)X(t)dt+βX(t)dB(t)(α+2β2)β

  • 如果 a , b a,b a,b是Lipschitz函数,即存在常数 A A A使得 ∣ a ( x ) − a ( y ) ∣ ≤ A ∣ x − y ∣ , ∣ b ( x ) − b ( y ) ∣ ≤ B ∣ X − y ∣ |a(x)-a(y)|\le A|x-y|,|b(x)-b(y)|\le B|X-y| a(x)a(y)Axy,b(x)b(y)BXy,则存在一个连续随机过程 X \boldsymbol X X,使得除一个零概率事件外随机微分方程成立,且以概率1唯一。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值