Dedekind切割定理,以及用它证明确界存在定理

Dedekind切割定理,以及用它证明确界存在定理

Dedekind分割:设 A / B A/B A/B是有理数集合 Q \mathbb Q Q的一个切割,即将 Q \mathbb Q Q中的元素分为两个集合 A , B A,B A,B,使得
∀ a ∈ A , b ∈ B , a < b . \forall a\in A, b\in B,\quad a<b. aA,bB,a<b.
从逻辑上,存在以下四种基本情况:

  1. A A A中有最大数 a 0 a_0 a0 B B B中有最小数 b 0 b_0 b0
  2. A A A中无最大数, B B B中有最小数 b 0 b_0 b0
  3. A A A中有最大数 a 0 a_0 a0 B B B中无最小数;
  4. A A A中无最大数, B B B中无最小数。

但第一种情况不可能发生,因为取有理数 t = a 0 + b 0 2 t=\frac{a_0+b_0}{2} t=2a0+b0,它将不属于 A , B A,B A,B的任何一个集合。

对于第四种情况,由于它没有确定任何有理数,即集合 A , B A,B A,B之间存在一个空隙,故引入一个新的数 c c c来填补空隙。定义 c c c为切割 A / B A/B A/B确定的无理数,并将有理数全体和由切割定义的无理数全体合并成一个集合 R \R R,在集合 R \R R中一样可以定义四则运算。


Dedekind切割定理:将 R \R R切割成两个非空实数集合 A ~ , B ~ \tilde A,\tilde B A~,B~,满足 R = A ~ ∪ B ~ \R=\tilde A\cup \tilde B R=A~B~,则必定满足以下两种基本情况中的一种:

  1. A ~ \tilde A A~中有最大数 a 0 a_0 a0 B ~ \tilde B B~中无最小数;
  2. A ~ \tilde A A~中无最大数, B ~ \tilde B B~中有最小数 b 0 b_0 b0

即不存在 A ~ \tilde A A~中无最大数、 B ~ \tilde B B~中无最小数的情况。这样的切割记作 A ~ / B ~ \tilde A/\tilde B A~/B~

证明:

A ~ \tilde A A~中的所有有理数构成的集合记作 A A A B ~ \tilde B B~中的所有有理数构成的集合 B B B,则有理数的切割 A / B A/B A/B满足以下三种情况的一种:

  1. A A A中有最大数 a 0 a_0 a0 B B B中无最小数;
  2. A A A中无最大数, B B B中有最小数 b 0 b_0 b0
  3. A A A中无最大数, B B B中无最小数。

对于情况1,要证明 a 0 a_0 a0也是 A ~ \tilde A A~中的最大数。如果 ∃ a ~ ∈ A ~ , a ~ > a 0 \exists \tilde a\in \tilde A,\tilde a>a_0 a~A~,a~>a0,则由有理数的稠密性,在区间 ( a 0 , a ~ ) (a_0,\tilde a) (a0,a~)中必定存在一个有理数 a a a,这样 a > a 0 a>a_0 a>a0 a 0 a_0 a0就不是 A A A的最大数,产生矛盾,故 a 0 a_0 a0也是 A A A中的最大数。

对于情况2,要证明 b 0 b_0 b0也是 B ~ \tilde B B~中的最小数,步骤与情况1一致。

对于情况3,由 A / B A/B A/B确定的无理数 c c c满足 ∀ a ∈ A , b ∈ B \forall a\in A, b\in B aA,bB,有 a < c < b a<c<b a<c<b。因为 c ∈ R = A ~ ∪ B ~ c\in \R=\tilde A\cup \tilde B cR=A~B~,所以要么 c ∈ A ~ c\in \tilde A cA~,要么 c ∈ B ~ c\in \tilde B cB~

  1. c ∈ A ~ c\in \tilde A cA~时,可以证明 c c c就是 A ~ \tilde A A~的最大数。如果 ∃ a ~ ∈ A ~ , a ~ > c \exists \tilde a\in \tilde A,\tilde a>c a~A~,a~>c,则在区间 ( c , a ~ ) (c,\tilde a) (c,a~)中存在有理数 a a a,使得 a > c a>c a>c,这就有 a ∈ A ~ ∩ Q = A a\in \tilde A\cap \mathbb Q=A aA~Q=A,但是 a > c a>c a>c产生矛盾;
  2. c ∈ B ~ c\in \tilde B cB~,可以证明 c c c就是 B ~ \tilde B B~的最小数,证明步骤与情况1一致。

由此,证明了要么 A ~ \tilde A A~中有最大数,要么 B ~ \tilde B B~中有最小数,即 R \R R是连续的。


下用Dedekind定理证明确界存在定理:如果非空实数集合 S S S存在上界,则必有上确界。

证明:

B B B S S S的所有上界构成的集合, A = R ∖ B A=\R\setminus B A=RB,则要么 A A A有最大数,要么 B B B有最小数。

如果 B B B有最小数,则 B B B的最小数 b 0 b_0 b0就是其 S S S的上确界。首先 b 0 ∈ S b_0\in S b0S,故 b 0 b_0 b0 S S S的上界,并且对于任何 ϵ > 0 \epsilon>0 ϵ>0 b 0 − ϵ < b 0 b_0-\epsilon<b_0 b0ϵ<b0,故 b 0 − ϵ ∉ B b_0-\epsilon \notin B b0ϵ/B,即 b 0 − ϵ ∈ A b_0-\epsilon \in A b0ϵA,不是 S S S的上界。

对于 A A A中的任何元素 x x x,由于 x x x不是 S S S的上界,故存在一个 t ∈ S t\in S tS,使得 x < t x< t x<t。取 x ∗ = x + t 2 x^*=\frac{x+t}{2} x=2x+t,则有 x < x ∗ < t x<x^*<t x<x<t,其中 x ∗ < t x^*<t x<t代表 S S S中的元素 t t t x ∗ x^* x大,即 x ∗ x^* x不是 S S S的上界即 x ∗ ∈ A x^*\in A xA x ∗ > x x^*>x x>x代表存在一个元素 x ∗ ∈ A x^*\in A xA使得 x ∗ > x x^*>x x>x。因为对 A A A中的任何元素 x x x,都能找到另一个在 A A A中的数 x ∗ x^* x比它大,因此 A A A不存在最大数。

由于 A A A没有最大数,所以 B B B一定有最小数 b 0 b_0 b0,且 b 0 b_0 b0 S S S的上确界,故有上界的 S S S一定有上确界,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值