基于Dify的Agent全流程测试

本文将带您深入了解基于Dify平台的Agent全流程测试,从问题定义到具体实现,全面覆盖了Agent开发测试的各个环节。我们将探讨ReAct推理模式的实际应用,分析Function calling与Tool调用的异同,并提供详细的工具定义、接入和调用方法


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

测试问题定义

一文读懂Langchain:ChatGLM3和ChatGPT的Agent调用分析中的测试基准一样,针对请问下面这个字符串的长度的三次幂是几:XXX

### Dify Agent 节点的功能与使用方法 Dify 是一种支持通过集成多种工具来增强大模型功能的框架,其中 **Agent** 的核心概念可以被理解为“大模型+工具”的组合形式[^1]。具体来说,Dify 提供了一种灵活的方式来构建和管理这些工具链,从而实现更复杂的应用场景。 #### 工具配置与调用 在实际应用中,可以通过定义提示词(Prompt)并结合内置工具完成特定任务。例如,在旅行规划领域,可以选择 `wikipedia_search` 这一内置工具,利用它收集关于用户指定目的地的相关信息。这种操作仅需在 Prompt 中以自然语言描述需求即可触发相应工具的工作流程。 #### 数据库交互能力 除了外部 API 或搜索引擎类服务外,Dify-Agent 还具备强大的本地化处理潜力——即通过对已有结构化数据的操作提升响应质量。这通常涉及以下几个方面: - 创建适合存储目标信息的表格架构; - 将所需资料填充至上述新建表单之中; - 构建关联的知识体系以便后续检索之便; - 配置好整个 SQL 查询逻辑作为后台支撑机制的一部分; - 设计恰当的 Prompts 来引导最终用户的提问方向,并确保返回结果满足预期效果[^2]。 #### 实际部署步骤概述 为了更好地理解和实践以上提到的各项特性,下面给出一个较为完整的实施路径说明: 当需要设置一个新的基于 Dify 平台上的智能助理项目时,首先要明确业务范围内的主要活动环节有哪些可能需要用到额外插件辅助;接着按照官方文档指示逐步执行如下动作项直至成功上线运行为止: 1. 定义清晰的目标对象及其属性字段集合构成初始版本的关系型数据库模式设计图谱。 2. 执行批量录入原始素材或者借助 ETL 流程自动化迁移现有资源进入新环境当中去。 3. 把整理完毕后的静态内容上传同步给平台内部维护着的一个全局共享知识仓库里面保存起来待查证核实后再正式投入使用前还需经过严格测试验证过程确认无误才行哦! 4. 编写符合语法规则要求的标准 SELECT 语句片段嵌入到预设好的模板文件夹位置处等待动态解析生成实时答案呈现界面之前先做好充分准备功课哟~ 5. 结合前面几步精心打磨出来的成品组件组装成一套完整连贯的服务链条向外界开放接口允许第三方开发者自由接入共同探索未知世界吧! ```python import dify_agent # 初始化 agent 对象 agent = dify_agent.Agent() # 添加 wikipedia_search 工具 agent.add_tool('wikipedia_search') # 设置 prompt 模板 template = "请帮我查找 {destination} 的相关信息" prompt = template.format(destination="巴黎") # 发起请求 response = agent.run(prompt) print(response) ``` 此代码展示了如何初始化一个带有 Wikipedia 搜索功能的代理实例,并通过简单的字符串替换方式构造询问句子传递给系统进行解答尝试看能否获取满意的结果反馈回来给我们参考学习借鉴一下哈~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值