非对称算法DM

前言

    最近公司的业务需要对部分字段加密后传输,学习了一些加密算法相关的知识,加密种类大致分三类:

     1.对称加密:公钥与私钥相同

     2.非对称加密:公钥与私钥不同,公钥暴露,私钥保密

     3.哈希加密:不可逆加密,多用来判断

    下面简单介绍下常用的非对称性加密:DM加密

package com.jm;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;
import javax.crypto.Cipher;
import javax.crypto.KeyAgreement;
import javax.crypto.SecretKey;
import javax.crypto.interfaces.DHPrivateKey;
import javax.crypto.interfaces.DHPublicKey;
import javax.crypto.spec.DHParameterSpec;
import java.security.*;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.HashMap;
import java.util.Map;
/**
 * Diffie- Hellman算法(D-H算法),密钥一致协议。
 * 是由公开密钥密码体制的奠基人Diffie和Hellman所提出的一种思想。
 * 简单的说就是允许两名用 户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。
 * 换句话说,就是由甲方产出一对密钥(公钥、私钥),乙方依照甲方公钥产生乙方密钥对(公钥、私 钥)。
 * 以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥(SecretKey)对数据加密。
 * 这样,在互通了本地密钥 (SecretKey)算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,
 * 同时可以使用对方的公钥和自己的私钥对数据解密。
 * 不单 单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯!该算法源于中国的同余定理——中国馀数定理。
 流程分析:
 1.甲方构建密钥对儿,将公钥公布给乙方,将私钥保留;双方约定数据加密算法;乙方通过甲方公钥构建密钥对儿,将公钥公布给甲方,将私钥保留。
 2.甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给乙方加密后的数据;
 乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
 3.乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给甲方加密后的数据;
 甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
 */
public class DMdemo {
    public static final String ALGORITHM = "DH";
    /**
     * 默认密钥字节数
     *
     *
     * DH
     * Default Keysize 1024
     * Keysize must be a multiple of 64, ranging from 512 to 1024 (inclusive).
     *
     */
    private static final int KEY_SIZE = 1024;
    /**
     * DH加密下需要一种对称加密算法对数据加密,这里我们使用DES,也可以使用其他对称加密算法。
     */
    public static final String SECRET_ALGORITHM = "DES";
    private static final String PUBLIC_KEY = "DHPublicKey";
    private static final String PRIVATE_KEY = "DHPrivateKey";
    /**
     * 初始化甲方密钥
     *
     * @return
     * @throws Exception
     */
    public static Map initKey() throws Exception {
        KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance(ALGORITHM);
        keyPairGenerator.initialize(KEY_SIZE);
        KeyPair keyPair = keyPairGenerator.generateKeyPair();
// 甲方公钥
        DHPublicKey publicKey = (DHPublicKey) keyPair.getPublic();
// 甲方私钥
        DHPrivateKey privateKey = (DHPrivateKey) keyPair.getPrivate();
        Map keyMap = new HashMap (2);
        keyMap.put(PUBLIC_KEY, publicKey);
        keyMap.put(PRIVATE_KEY, privateKey);
        return keyMap;
    }
    /**
     * 初始化乙方密钥
     *
     * @param key 甲方公钥
     * @return
     * @throws Exception
     */
    public static Map initKey(String key) throws Exception {
// 解析甲方公钥
        byte[] keyBytes = new BASE64Decoder().decodeBuffer(key);
        X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(keyBytes);
        KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM);
        PublicKey pubKey = keyFactory.generatePublic(x509KeySpec);
// 由甲方公钥构建乙方密钥
        DHParameterSpec dhParamSpec = ((DHPublicKey) pubKey).getParams();
        KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance(keyFactory.getAlgorithm());
        keyPairGenerator.initialize(dhParamSpec);
        KeyPair keyPair = keyPairGenerator.generateKeyPair();
// 乙方公钥
        DHPublicKey publicKey = (DHPublicKey) keyPair.getPublic();
// 乙方私钥
        DHPrivateKey privateKey = (DHPrivateKey) keyPair.getPrivate();
        Map keyMap = new HashMap (2);
        keyMap.put(PUBLIC_KEY, publicKey);
        keyMap.put(PRIVATE_KEY, privateKey);
        return keyMap;
    }
    /**
     * 加密
     *
     * @param data
     * 待加密数据
     * @param publicKey
     * 甲方公钥
     * @param privateKey
     * 乙方私钥
     * @return
     * @throws Exception
     */
    public static String encrypt(String data, String publicKey, String privateKey) throws Exception {
// 生成本地密钥
        SecretKey secretKey = getSecretKey(publicKey, privateKey);
// 数据加密
        Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm());
        cipher.init(Cipher.ENCRYPT_MODE, secretKey);
        return new BASE64Encoder().encode(cipher.doFinal(data.getBytes("UTF-8")));
    }
    /**
     * 解密
     *
     * @param data
     * 待解密数据
     * @param publicKey
     * 乙方公钥
     * @param privateKey
     * 乙方私钥
     * @return
     * @throws Exception
     */
    public static String decrypt(String data, String publicKey, String privateKey) throws Exception {
// 生成本地密钥
        SecretKey secretKey = getSecretKey(publicKey, privateKey);
// 数据解密
        Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm());
        cipher.init(Cipher.DECRYPT_MODE, secretKey);
        byte[] decode_data = new BASE64Decoder().decodeBuffer(data);
        return new String(cipher.doFinal(decode_data));
    }
    /**
     * 构建密钥
     *
     * @param publicKey
     * 公钥
     * @param privateKey
     * 私钥
     * @return
     * @throws Exception
     */
    private static SecretKey getSecretKey(String publicKey, String privateKey) throws Exception {
// 初始化公钥
        byte[] pubKeyBytes = new BASE64Decoder().decodeBuffer(publicKey);
        KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM);
        X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(pubKeyBytes);
        PublicKey pubKey = keyFactory.generatePublic(x509KeySpec);
// 初始化私钥
        byte[] priKeyBytes = new BASE64Decoder().decodeBuffer(privateKey);
        PKCS8EncodedKeySpec pkcs8KeySpec = new PKCS8EncodedKeySpec(priKeyBytes);
        Key priKey = keyFactory.generatePrivate(pkcs8KeySpec);
        KeyAgreement keyAgree = KeyAgreement.getInstance(keyFactory.getAlgorithm());
        keyAgree.init(priKey);
        keyAgree.doPhase(pubKey, true);
// 生成本地密钥
        SecretKey secretKey = keyAgree.generateSecret(SECRET_ALGORITHM);
        return secretKey;
    }
    /**
     * 取得私钥
     *
     * @param keyMap
     * @return
     * @throws Exception
     */
    public static String getPrivateKey(Map keyMap) throws Exception {
        Key key = (Key) keyMap.get(PRIVATE_KEY);
        return new BASE64Encoder().encode(key.getEncoded());
    }
    /**
     * 取得公钥
     *
     * @param keyMap
     * @return
     * @throws Exception
     */
    public static String getPublicKey(Map keyMap) throws Exception {
        Key key = (Key) keyMap.get(PUBLIC_KEY);
        return new BASE64Encoder().encode(key.getEncoded());
    }
    public static void main(String[] args) throws Exception{
// 生成甲方密钥对儿
        Map aKeyMap = DMdemo.initKey();
        String aPublicKey = DMdemo.getPublicKey(aKeyMap);
        String aPrivateKey = DMdemo.getPrivateKey(aKeyMap);
        System.err.println("甲方公钥:" + aPublicKey);
        System.err.println("甲方私钥:" + aPrivateKey);
// 由甲方公钥产生本地(乙方)密钥对儿
        Map bKeyMap = DMdemo.initKey(aPublicKey);
        String bPublicKey = DMdemo.getPublicKey(bKeyMap);
        String bPrivateKey = DMdemo.getPrivateKey(bKeyMap);
        System.err.println("乙方公钥:" + bPublicKey);
        System.err.println("乙方私钥:" + bPrivateKey);
        String input = "鄂尔多斯市乌兰煤炭(集团)有限责任公司温家梁三号煤矿#C1801003133#蒙AL2928#100.0#2018-12-18 14:52:44#54.82#-100.0#不粘煤#2018-12-18 15:01:40#1.0#李四#6#\"";
        System.out.println("原文: " + input);
// 由甲方公钥,乙方私钥构建密文
        String aCode = DMdemo.encrypt(input, aPublicKey, bPrivateKey);
        System.out.println("由甲方公钥,乙方私钥构建密文: " + aCode);
        System.out.println(aCode.length());
// 由乙方公钥,甲方私钥解密
        String aDecode = DMdemo.decrypt(aCode, bPublicKey, aPrivateKey);
        System.out.println("由乙方公钥,甲方私钥解密: " + aDecode); System.err.println(" ===============反过来加密解密================== ");
// 由乙方公钥,甲方私钥构建密文
        String bCode = DMdemo.encrypt(input, bPublicKey, aPrivateKey);
        System.out.println("由乙方公钥,甲方私钥构建密文: " + bCode);
        System.out.println(bCode.length());
// 由甲方公钥,乙方私钥解密
        String bDecode = DMdemo.decrypt(bCode, aPublicKey, bPrivateKey);
        System.out.println("由甲方公钥,乙方私钥解密: " + bDecode);
/**
 * 如我代码证实,甲乙双方在获得对方公钥后可以对发送给对方的数据加密,同时也能对接收到的数据解密,达到了数据安全通信的目的!
 */
    }}

 

 

 

数据挖掘算法 算法目录 18大DM算法 包名 目录名 算法名 AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法 AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法 BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法 Classification DataMining_CART CART-分类回归树算法 Classification DataMining_ID3 ID3-决策树分类算法 Classification DataMining_KNN KNN-k最近邻算法工具类 Classification DataMining_NaiveBayes NaiveBayes-朴素贝叶斯算法 Clustering DataMining_BIRCH BIRCH-层次聚类算法 Clustering DataMining_KMeans KMeans-K均值算法 GraphMining DataMining_GSpan GSpan-频繁子图挖掘算法 IntegratedMining DataMining_CBA CBA-基于关联规则的分类算法 LinkMining DataMining_HITS HITS-链接分析算法 LinkMining DataMining_PageRank PageRank-网页重要性/排名算法 RoughSets DataMining_RoughSets RoughSets-粗糙集属性约简算法 SequentialPatterns DataMining_GSP GSP-序列模式分析算法 SequentialPatterns DataMining_PrefixSpan PrefixSpan-序列模式分析算法 StatisticalLearning DataMining_EM EM-期望最大化算法 StatisticalLearning DataMining_SVM SVM-支持向量机算法 其他经典DM算法 包名 目录名 算法名 Others DataMining_ACO ACO-蚁群算法 Others DataMining_BayesNetwork BayesNetwork-贝叶斯网络算法 Others DataMining_CABDDCC CABDDCC-基于连通图的分裂聚类算法 Others DataMining_Chameleon Chameleon-两阶段合并聚类算法 Others DataMining_DBSCAN DBSCAN-基于密度的聚类算法 Others DataMining_GA GA-遗传算法 Others DataMining_GA_Maze GA_Maze-遗传算法在走迷宫游戏中的应用算法 Others DataMining_KDTree KDTree-k维空间关键数据检索算法工具类 Others DataMining_MSApriori MSApriori-基于多支持度的Apriori算法 Others DataMining_RandomForest RandomForest-随机森林算法 Others DataMining_TAN TAN-树型朴素贝叶斯算法 Others DataMining_Viterbi Viterbi-维特比算法 18大经典DM算法 18大数据挖掘的经典算法以及代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面,后面都是相应算法的博文链接,希望能够帮助大家学。 目前追加了其他的一些经典的DM算法,在others的包中涉及聚类,分类,图算法,搜索算等等,没有具体分类。 C4.5 C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。详细介绍链接 CART CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法,详细介绍链接 KNN K最近邻算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。详细介绍链接 Naive Bayes 朴素贝叶斯算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。详细介绍链接 SVM 支持向量机算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。详细介绍链接 EM 期望最大化算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。详细介绍链接 Apriori Apriori算法是关联规则挖掘算法,通过连接和剪枝运算挖掘出频繁项集,然后根据频繁项集得到关联规则,关联规则的导出需要满足最小置信度的要求。详细介绍链接 FP-Tree 频繁模式树算法。这个算法也有被称为FP-growth算法,这个算法克服了Apriori算法的产生过多侯选集的缺点,通过递归的产生频度模式树,然后对树进行挖掘,后面的过程与Apriori算法一致。详细介绍链接 PageRank 网页重要性/排名算法。PageRank算法最早产生于Google,核心思想是通过网页的入链数作为一个网页好快的判定标准,如果1个网页内部包含了多个指向外部的链接,则PR值将会被均分,PageRank算法也会遭到LinkSpan攻击。详细介绍链接 HITS HITS算法是另外一个链接算法,部分原理与PageRank算法是比较相似的,HITS算法引入了权威值和中心值的概念,HITS算法是受用户查询条件影响的,他一般用于小规模的数据链接分析,也更容易遭受到攻击。详细介绍链接 K-Means K-Means算法是聚类算法,k在在这里指的是分类的类型数,所以在开始设定的时候非常关键,算法的原理是首先假定k个分类点,然后根据欧式距离计算分类,然后去同分类的均值作为新的聚簇中心,循环操作直到收敛。详细介绍链接 BIRCH BIRCH算法利用构建CF聚类特征树作为算法的核心,通过树的形式,BIRCH算法扫描数据库,在内存中建立一棵初始的CF-树,可以看做数据的多层压缩。详细介绍链接 AdaBoost AdaBoost算法是一种提升算法,通过对数据的多次训练得到多个互补的分类器,然后组合多个分类器,构成一个更加准确的分类器。详细介绍链接 GSP GSP算法是序列模式挖掘算法。GSP算法也是Apriori类算法,在算法的过程中也会进行连接和剪枝操作,不过在剪枝判断的时候还加上了一些时间上的约束等条件。详细介绍链接 PreFixSpan PreFixSpan算法是另一个序列模式挖掘算法,在算法的过程中不会产生候选集,给定初始前缀模式,不断的通过后缀模式中的元素转到前缀模式中,而不断的递归挖掘下去。详细介绍链接 CBA 基于关联规则分类算法。CBA算法是一种集成挖掘算法,因为他是建立在关联规则挖掘算法之上的,在已有的关联规则理论前提下,做分类判断,只是在算法的开始时对数据做处理,变成类似于事务的形式。详细介绍链接 RoughSets 粗糙集算法。粗糙集理论是一个比较新颖的数据挖掘思想。这里使用的是用粗糙集进行属性约简的算法,通过上下近似集的判断删除无效的属性,进行规制的输出。详细介绍链接 GSpan gSpan算法属于图挖掘算法领域。,主要用于频繁子图的挖掘,相较于其他的图算法,子图挖掘算法是他们的一个前提或基础算法。gSpan算法用到了DFS编码,和Edge五元组,最右路径子图扩展等概念,算法比较的抽象和复杂。详细介绍链接 Others目录下的算法: GA 遗传算法。遗传算法运用了生物进化理论的知识来寻找问题最优解的算法算法的遗传进化过程分选择,交叉和变异操作,其中选择操是非常关键的步骤,把更适应的基于组遗传给下一代。详细介绍链接 DbScan 基于空间密度聚类算法。dbScan作为一种特殊聚类算法,弥补了其他算法的一些不足,基于空间密,实现聚类效果,可以发现任意形状的聚簇。详细介绍链接 GA_Maze 遗传算法在走迷宫游戏中的应用。将走迷宫中的搜索出口路径的问题转化为遗传算法中的问题通过构造针对此特定问题的适值函数,基因移动方向的定位,巧的进行问题的求解。详细介绍链接 CABDDCC 基于连通图的分裂聚类算法。也是属于层次聚类算法主要分为2个阶段,第一阶段构造连通图。第二个阶段是分裂连通图,最终形成聚类结果。详细介绍链接 Chameleon 两阶段聚类算法。与CABDDCC算法相反,最后是通过对小簇集合的合并,形成最终的结果,在第一阶段主要是通过K近邻的思想形成小规模的连通图,第二阶段通过RI(相对互连性)和RC(相对近似性)来选一个最佳的簇进行合并。详细介绍链接 RandomForest 随机森林算法算法思想是决策树+boosting.决策树采用的是CART分类回归数,通过组合各个决策树的弱分类器,构成一个最终的强分类器,在构造决策树的时候采取随机数量的样本数和随机的部分属性进行子决策树的构建,避免了过分拟合的现象发生。详细介绍链接 KDTree K-Dimension Tree。多维空间划分树,数据在多维空间进行划分与查找。主要用于关键信息的搜索,类似于在空间中的二分搜索,大大提高了搜索效率,在寻找目标元素时,使用了DFS深度优先的方式和回溯进行最近点的寻找。详细介绍链接 MS-Apriori 基于多支持度的Apriori算法。是Apriori算法的升级算法,弥补了原先Apriori算法的不足,还增加了支持度差别限制以及支持度计数统计方面的优化,无须再次重新扫描整个数据集,产生关联规则的时候可以根据子集的关系避免一些置信度的计算。详细介绍链接 ACO 蚁群算法。蚁群算法又称为蚂蚁算法。同GA遗传算法类似,也是运用了大自然规律的算法,用于在图中寻找最优路径的概率型算法。灵感来源于蚂蚁在寻找食物时会散播信息素的发现路径行为。详细介绍链接 BayesNetwork 贝叶斯网络算法。弥补了朴素贝叶斯算法中必须要事件独立性的缺点,利用了贝叶斯网络的DAG有向无环图,允许各个事件保留一定的依赖关系,网络结构中的每个节点代表一种属性,边代表相应的条件概率值,通过计算从而能得到精准的分类效果。详细介绍链接 TAN 树型朴素贝叶斯算法。此算法又被称为加强版朴素贝叶斯算法。在满足原有朴素贝叶斯条件的基础上,他允许部条件属性直接的关联性。形成树型的结构。详细介绍链接 Viterbi 维特比算法。给定一个隐马尔科夫模型以及一个观察序列,求出潜在的状态序列信息,每个潜在状态信息又会受到前一个状态信息的影响。 算法使用方法 在每个算法中给出了3大类型,主算法程序,调用程序,输入数据,调用方法如下: 将需要数据的测试数据转化成与给定的输入格式相同 然后以Client类的测试程序调用方式进行使用。 也可以自行修改算法程序,来适用于自己的使用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值