车牌识别,移植到android系统

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jinshengtao/article/details/18037525

   首先吐槽,搞了1天半,终于弄好了。自己android开发是小白,之前一门心思想在jni目录下读取xml文件,事实证明无论如何都不行的。好吧,后来发现资源文件应该都放在assets目录下,可是文件会被压缩,必须用什么assetmanager访问。opencv之前训练的两个svm.xml和ocr.xml文件,和一般的xml文件不同的,自己解析xml存到opencv的mat中太麻烦了。后来想了又想,还是放到sdcard中比较好,我是通过DDMS导入的,反正这次只是长姿势


声明:

1.本次导入的汽车图片还是包含西班牙的车牌的汽车,它与中国车牌最大的不同是不包含中文,西班牙车牌含有0-9数字及20个英文字符

2.在模拟机上运行速度貌似和vs2008一样慢,而且有识别错的可能,我碰到过

3.原理什么的见我前面的文章,我这次直接使用训练好的svm.xml和ocr.xml,并给出完整的识别流程。整个工程文件,待会上传csdn下载频道


环境需求:

eclipse juno

ndk(r9)

android sdk 4.4 api 19

opencv 2.4.7 android版本

cygwin


准备工作:

1.将E:\OpenCV-2.4.7.1-android-sdk\sdk中的java项目导入工作空间,日后凡事java端调用opencv的函数都要用到这个类库

2.安装opencv manager.apk,目前在android上所有的opencv程序都必须依附于android manger。在DOS窗口口中执行:

adb install <OpenCV4Android SDKpath>/apk/OpenCV_2.4.7_Manager_2.14_armv7a-neon.apk

开始项目:

1.新建android application工程,取名CarPlate,右击项目属性,勾选opencv类库

2.将汽车照片复制到drwabale随便哪个目录下,然后编写布局文件activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
   	android:orientation="vertical"
    tools:context=".MainActivity" >

    <TextView
        android:id="@+id/myshow"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="检测结果...." />
	<Button   
        android:id="@+id/btn_plate"  
        android:layout_width="fill_parent"  
        android:layout_height="wrap_content"  
        android:text="车牌检测"
        android:onClick="click"
        /> 
    <ImageView  
        android:id="@+id/image_view"  
        android:layout_width="wrap_content"  
        android:layout_height="wrap_content"  
        android:contentDescription="@string/str_proc"/>   
</LinearLayout>

3.新建CarPlateDetection类,编写本地化方法,作为调用c语言代码的入口:

package com.example.carplate;


public class CarPlateDetection {
	public static native String ImageProc(int[] pixels, int w, int h,String path);
}

4.dos窗口中,使用javah工具,自动生成c语言的头文件,具体方法就是在DOS窗口中跑到CarPlate项目的bin\classes目录下,输入:

javah com.example.carplate.CarPlateDetection
之后,在classes目录下将会有com_example_carplate_CarPlateDetection.h文件


5.新建一个jni文件夹,把刚才的那个com_example_carplate_CarPlateDetection.h文件拷贝过来。然后编写Android.mk

LOCAL_PATH := $(call my-dir)  
include $(CLEAR_VARS)  
include E:/OpenCV-2.4.7.1-android-sdk/sdk/native/jni/OpenCV.mk  
LOCAL_SRC_FILES  := ImageProc.cpp  
LOCAL_SRC_FILES  += Plate_Recognition.cpp
LOCAL_SRC_FILES  += Plate_Segment.cpp
LOCAL_SRC_FILES  += Plate.cpp
LOCAL_C_INCLUDES += $(LOCAL_PATH)
LOCAL_MODULE     := imageproc  
LOCAL_LDLIBS += -llog 
include $(BUILD_SHARED_LIBRARY)  


6.修改AndroidManifest.xml,增加sdcard权限【就算是读取,也要加上!】:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/> 

7.回到MainActivity中,编写java端主要的代码:

package com.example.carplate;

import java.io.File;

import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.*;

import android.os.Bundle;
import android.os.Environment;
import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.view.Menu;
import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;

public class MainActivity extends Activity {
	private ImageView imageView = null;  
	private Bitmap bmp = null;  
	private TextView m_text = null;
	private String path = null; //SDCARD 根目录
	@Override
	protected void onCreate(Bundle savedInstanceState) {
		super.onCreate(savedInstanceState);
		setContentView(R.layout.activity_main);
		imageView = (ImageView) findViewById(R.id.image_view);  
		m_text = (TextView) findViewById(R.id.myshow);
	    //将汽车完整图像加载程序中并进行显示
		 bmp = BitmapFactory.decodeResource(getResources(), R.drawable.test2);  
	     imageView.setImageBitmap(bmp);
	     path = Environment.getExternalStorageDirectory().getAbsolutePath();//获取跟目录 
	     System.out.println(path);
	}

	//OpenCV类库加载并初始化成功后的回调函数,在此我们不进行任何操作  
    private BaseLoaderCallback  mLoaderCallback = new BaseLoaderCallback(this) {  
       @Override  
       public void onManagerConnected(int status) {  
           switch (status) {  
               case LoaderCallbackInterface.SUCCESS:{  
                   System.loadLibrary("imageproc");  
               } break;  
               default:{  
                   super.onManagerConnected(status);  
               } break;  
           }  
       }  
   };  
   
   public void click(View view){
	   System.out.println("entering the jni");
	   int w = bmp.getWidth();
	   int h = bmp.getHeight();
	   int[] pixels = new int[w * h];
	   String result=null;
	   bmp.getPixels(pixels, 0, w, 0, 0, w, h);
	  // System.out.println(Environment.getExternalStorageState());
	   result=CarPlateDetection.ImageProc(pixels, w, h,path);
	   System.out.println(result);
	   m_text.setText(result);   
   }
   
	@Override
	protected void onResume() {
		// TODO Auto-generated method stub
		super.onResume();
		  //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是  
       //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存在于OpenCV安装包的apk目录中  
       OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_3, this, mLoaderCallback);  
	}
}

8.好了,现在开始主要的C语言部分。对应头文件和源文件内容分别是(这些文件也放在jni目录下):

Plate.h:【车牌类,包含车牌数据结构及对识别的车牌字符顺序调整函数】

#ifndef Plate_h
#define Plate_h

#include <string.h>
#include <vector>

#include <cv.h>
#include <highgui.h>
#include <cvaux.h>

using namespace std;
using namespace cv;

class Plate{
    public:
        Plate();
        Plate(Mat img, Rect pos);
        string str();
        Rect position;
        Mat plateImg;
        vector<char> chars;
        vector<Rect> charsPos;        
};

#endif

Plate.cpp:

#include "Plate.h"

Plate::Plate(){
}

Plate::Plate(Mat img, Rect pos){
    plateImg=img;
    position=pos;
}

string Plate::str(){
    string result="";
    //Order numbers
    vector<int> orderIndex;
    vector<int> xpositions;
    for(int i=0; i< charsPos.size(); i++){
        orderIndex.push_back(i);
        xpositions.push_back(charsPos[i].x);
    }
    float min=xpositions[0];
	int minIdx=0;
    for(int i=0; i< xpositions.size(); i++){
        min=xpositions[i];
        minIdx=i;
        for(int j=i; j<xpositions.size(); j++){
            if(xpositions[j]<min){
                min=xpositions[j];
                minIdx=j;
            }
        }
        int aux_i=orderIndex[i];
        int aux_min=orderIndex[minIdx];
        orderIndex[i]=aux_min;
        orderIndex[minIdx]=aux_i;
        
        float aux_xi=xpositions[i];
        float aux_xmin=xpositions[minIdx];
        xpositions[i]=aux_xmin;
        xpositions[minIdx]=aux_xi;
    }
    for(int i=0; i<orderIndex.size(); i++){
        result=result+chars[orderIndex[i]];
    }
    return result;
}

PlateSegment.h:【功能:从一张汽车图片中分割得到一张车牌】

#ifndef seg_h
#define seg_h

#include<iostream>
#include <cv.h>
#include <highgui.h>
#include <cvaux.h>
#include "Plate.h"

using namespace std;
using namespace cv;

bool verifySizes(RotatedRect mr);
Mat histeq(Mat in);
vector<Plate> segment(Mat input);

#endif

PlateSegment.cpp:

#include "Plate_Segment.h"

//对minAreaRect获得的最小外接矩形,用纵横比进行判断
bool verifySizes(RotatedRect mr)
{
	float error=0.4;
	//Spain car plate size: 52x11 aspect 4,7272
	float aspect=4.7272;
	//Set a min and max area. All other patchs are discarded
	int min= 15*aspect*15; // minimum area
	int max= 125*aspect*125; // maximum area
	//Get only patchs that match to a respect ratio.
	float rmin= aspect-aspect*error;
	float rmax= aspect+aspect*error;

	int area= mr.size.height * mr.size.width;
	float r= (float)mr.size.width / (float)mr.size.height;
	if(r<1)
		r= (float)mr.size.height / (float)mr.size.width;

	if(( area < min || area > max ) || ( r < rmin || r > rmax )){
		return false;
	}else{
		return true;
	}
}

Mat histeq(Mat in)
{
	Mat out(in.size(), in.type());
	if(in.channels()==3){
		Mat hsv;
		vector<Mat> hsvSplit;
		cvtColor(in, hsv, CV_BGR2HSV);
		split(hsv, hsvSplit);
		equalizeHist(hsvSplit[2], hsvSplit[2]);
		merge(hsvSplit, hsv);
		cvtColor(hsv, out, CV_HSV2BGR);
	}else if(in.channels()==1){
		equalizeHist(in, out);
	}

	return out;
}

vector<Plate> segment(Mat input){
	vector<Plate> output;

	//apply a Gaussian blur of 5 x 5 and remove noise
	Mat img_gray;
	cvtColor(input, img_gray, CV_BGR2GRAY);
	blur(img_gray, img_gray, Size(5,5));    

	//Finde vertical edges. Car plates have high density of vertical lines
	Mat img_sobel;
	Sobel(img_gray, img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT);//xorder=1,yorder=0,kernelsize=3

	//apply a threshold filter to obtain a binary image through Otsu's method
	Mat img_threshold;
	threshold(img_sobel, img_threshold, 0, 255, CV_THRESH_OTSU+CV_THRESH_BINARY);

	//Morphplogic operation close:remove blank spaces and connect all regions that have a high number of edges
	Mat element = getStructuringElement(MORPH_RECT, Size(17, 3) );
	morphologyEx(img_threshold, img_threshold, CV_MOP_CLOSE, element);

	//Find 轮廓 of possibles plates
	vector< vector< Point> > contours;
	findContours(img_threshold,
		contours, // a vector of contours
		CV_RETR_EXTERNAL, // 提取外部轮廓
		CV_CHAIN_APPROX_NONE); // all pixels of each contours

	//Start to iterate to each contour founded
	vector<vector<Point> >::iterator itc= contours.begin();
	vector<RotatedRect> rects;

	//Remove patch that are no inside limits of aspect ratio and area.    
	while (itc!=contours.end()) {
		//Create bounding rect of object
		RotatedRect mr= minAreaRect(Mat(*itc));
		if( !verifySizes(mr)){
			itc= contours.erase(itc);
		}else{
			++itc;
			rects.push_back(mr);
		}
	}

	cv::Mat result;
	input.copyTo(result);

	for(int i=0; i< rects.size(); i++)
	{
		//get the min size between width and height
		float minSize=(rects[i].size.width < rects[i].size.height)?rects[i].size.width:rects[i].size.height;
		minSize=minSize-minSize*0.5;
		//initialize rand and get 5 points around center for floodfill algorithm
		srand ( time(NULL) );
		//Initialize floodfill parameters and variables
		Mat mask;
		mask.create(input.rows + 2, input.cols + 2, CV_8UC1);
		mask= Scalar::all(0);
		int loDiff = 30;
		int upDiff = 30;
		int connectivity = 4;
		int newMaskVal = 255;
		int NumSeeds = 10;
		Rect ccomp;
		int flags = connectivity + (newMaskVal << 8 ) + CV_FLOODFILL_FIXED_RANGE + CV_FLOODFILL_MASK_ONLY;
		for(int j=0; j<NumSeeds; j++){
			Point seed;
			seed.x=rects[i].center.x+rand()%(int)minSize-(minSize/2);
			seed.y=rects[i].center.y+rand()%(int)minSize-(minSize/2);
			int area = floodFill(input, mask, seed, Scalar(255,0,0), &ccomp, Scalar(loDiff, loDiff, loDiff), Scalar(upDiff, upDiff, upDiff), flags);
		}

		//Check new floodfill mask match for a correct patch.
		//Get all points detected for get Minimal rotated Rect
		vector<Point> pointsInterest;
		Mat_<uchar>::iterator itMask= mask.begin<uchar>();
		Mat_<uchar>::iterator end= mask.end<uchar>();
		for( ; itMask!=end; ++itMask)
			if(*itMask==255)
				pointsInterest.push_back(itMask.pos());

		RotatedRect minRect = minAreaRect(pointsInterest);

		if(verifySizes(minRect)){
			// rotated rectangle drawing 
			Point2f rect_points[4]; minRect.points( rect_points );   

			//Get rotation matrix
			float r= (float)minRect.size.width / (float)minRect.size.height;
			float angle=minRect.angle;    
			if(r<1)
				angle=90+angle;
			Mat rotmat= getRotationMatrix2D(minRect.center, angle,1);

			//Create and rotate image
			Mat img_rotated;
			warpAffine(input, img_rotated, rotmat, input.size(), CV_INTER_CUBIC);

			//Crop image
			Size rect_size=minRect.size;
			if(r < 1)
				swap(rect_size.width, rect_size.height);
			Mat img_crop;
			getRectSubPix(img_rotated, rect_size, minRect.center, img_crop);

			Mat resultResized;
			resultResized.create(33,144, CV_8UC3);
			resize(img_crop, resultResized, resultResized.size(), 0, 0, INTER_CUBIC);
			//Equalize croped image
			Mat grayResult;
			cvtColor(resultResized, grayResult, CV_BGR2GRAY); 
			blur(grayResult, grayResult, Size(3,3));
			grayResult=histeq(grayResult);
			output.push_back(Plate(grayResult,minRect.boundingRect()));
		}
	}
	return output;
}

PlateRecogntion.h:【从车牌图片上识别各个字符】

#ifndef rec_h
#define rec_h
#include <cv.h>
#include <highgui.h>
#include <cvaux.h>
#include <ml.h>

#include <iostream>
#include <vector>
#define HORIZONTAL    1
#define VERTICAL    0

using namespace std;
using namespace cv;

bool verifySizes(Mat r);
Mat preprocessChar(Mat in);
Mat ProjectedHistogram(Mat img, int t);
Mat features(Mat in, int sizeData);
int classify(Mat f,CvANN_MLP *ann);
void train(Mat TrainData, Mat classes,CvANN_MLP *ann,int nlayers);
#endif

PlateRecognition.cpp:

#include "Plate_Recognition.h"

const int numCharacters=30;

bool verifySizes(Mat r){
	//Char sizes 45x77
	float aspect=45.0f/77.0f;
	float charAspect= (float)r.cols/(float)r.rows;
	float error=0.35;
	float minHeight=15;
	float maxHeight=28;
	//We have a different aspect ratio for number 1, and it can be ~0.2
	float minAspect=0.2;
	float maxAspect=aspect+aspect*error;
	//area of pixels
	float area=countNonZero(r);
	//bb area
	float bbArea=r.cols*r.rows;
	// of pixel in area
	float percPixels=area/bbArea;

	if(percPixels < 0.8 && charAspect > minAspect && charAspect < maxAspect && r.rows >= minHeight && r.rows < maxHeight)
		return true;
	else
		return false;

}

Mat preprocessChar(Mat in){
	//Remap image
	int h=in.rows;
	int w=in.cols;
	int charSize=20;	//统一每个字符的大小
	Mat transformMat=Mat::eye(2,3,CV_32F);
	int m=max(w,h);
	transformMat.at<float>(0,2)=m/2 - w/2;
	transformMat.at<float>(1,2)=m/2 - h/2;

	Mat warpImage(m,m, in.type());
	warpAffine(in, warpImage, transformMat, warpImage.size(), INTER_LINEAR, BORDER_CONSTANT, Scalar(0) );

	Mat out;
	resize(warpImage, out, Size(charSize, charSize) ); 

	return out;
}

//create the accumulation histograms,img is a binary image, t is 水平或垂直
Mat ProjectedHistogram(Mat img, int t)
{
	int sz=(t)?img.rows:img.cols;
	Mat mhist=Mat::zeros(1,sz,CV_32F);

	for(int j=0; j<sz; j++){
		Mat data=(t)?img.row(j):img.col(j);
		mhist.at<float>(j)=countNonZero(data);	//统计这一行或一列中,非零元素的个数,并保存到mhist中
	}

	//Normalize histogram
	double min, max;
	minMaxLoc(mhist, &min, &max);

	if(max>0)
		mhist.convertTo(mhist,-1 , 1.0f/max, 0);//用mhist直方图中的最大值,归一化直方图

	return mhist;
}

Mat features(Mat in, int sizeData){
	//Histogram features
	Mat vhist=ProjectedHistogram(in,VERTICAL);
	Mat hhist=ProjectedHistogram(in,HORIZONTAL);

	//Low data feature
	Mat lowData;
	resize(in, lowData, Size(sizeData, sizeData) );

	//Last 10 is the number of moments components
	int numCols=vhist.cols+hhist.cols+lowData.cols*lowData.cols;

	Mat out=Mat::zeros(1,numCols,CV_32F);
	//Asign values to feature,ANN的样本特征为水平、垂直直方图和低分辨率图像所组成的矢量
	int j=0;
	for(int i=0; i<vhist.cols; i++)
	{
		out.at<float>(j)=vhist.at<float>(i);
		j++;
	}
	for(int i=0; i<hhist.cols; i++)
	{
		out.at<float>(j)=hhist.at<float>(i);
		j++;
	}
	for(int x=0; x<lowData.cols; x++)
	{
		for(int y=0; y<lowData.rows; y++){
			out.at<float>(j)=(float)lowData.at<unsigned char>(x,y);
			j++;
		}
	}

	return out;
}


int classify(Mat f,CvANN_MLP *ann){
	int result=-1;
	Mat output(1, 30, CV_32FC1); //西班牙车牌只有30种字符
	(*ann).predict(f, output);
	Point maxLoc;
	double maxVal;
	minMaxLoc(output, 0, &maxVal, 0, &maxLoc);
	return maxLoc.x;
}

void train(Mat TrainData, Mat classes,CvANN_MLP *ann,int nlayers){
	Mat layers(1,3,CV_32SC1);
	layers.at<int>(0)= TrainData.cols;
	layers.at<int>(1)= nlayers;
	layers.at<int>(2)= 30;
	(*ann).create(layers, CvANN_MLP::SIGMOID_SYM, 1, 1);

	//Prepare trainClases
	//Create a mat with n trained data by m classes
	Mat trainClasses;
	trainClasses.create( TrainData.rows, 30, CV_32FC1 );
	for( int i = 0; i <  trainClasses.rows; i++ )
	{
		for( int k = 0; k < trainClasses.cols; k++ )
		{
			//If class of data i is same than a k class
			if( k == classes.at<int>(i) )
				trainClasses.at<float>(i,k) = 1;
			else
				trainClasses.at<float>(i,k) = 0;
		}
	}
	Mat weights( 1, TrainData.rows, CV_32FC1, Scalar::all(1) );

	//Learn classifier
	(*ann).train( TrainData, trainClasses, weights );
}

然后,编写我们的ImageProc.cpp:【这边我把sdcard的路径都写死了,大家自己调整下】

#include<com_example_carplate_CarPlateDetection.h>
#include "Plate.h"
#include "Plate_Segment.h"
#include "Plate_Recognition.h"
#include <android/log.h>
#define LOG_TAG "System.out"
#define  LOGI(...)  __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
#define  LOGD(...)  __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG,__VA_ARGS__)
#define  LOGE(...)  __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)

/*char* jstring2str(JNIEnv* env, jstring jstr)
{
    char*   rtn   =   NULL;
    jclass   clsstring   =   env->FindClass("java/lang/String");
    jstring   strencode   =   env->NewStringUTF("GB2312");
    jmethodID   mid   =   env->GetMethodID(clsstring,   "getBytes",   "(Ljava/lang/String;)[B");
    jbyteArray   barr=   (jbyteArray)env->CallObjectMethod(jstr,mid,strencode);
    jsize   alen   =   env->GetArrayLength(barr);
    jbyte*   ba   =   env->GetByteArrayElements(barr,JNI_FALSE);
    if(alen   >   0)
    {
        rtn   =   (char*)malloc(alen+1);
        memcpy(rtn,ba,alen);
        rtn[alen]=0;
    }
    env->ReleaseByteArrayElements(barr,ba,0);
    return  rtn;
}*/

JNIEXPORT jstring JNICALL Java_com_example_carplate_CarPlateDetection_ImageProc
  (JNIEnv *env, jclass obj, jintArray buf, jint w, jint h,jstring dir){
	jint *cbuf;
    cbuf = env->GetIntArrayElements(buf, false);
    //char* path = jstring2str(env,dir);

    Size size;
    size.width = w;
    size.height = h;

    Mat imageData,input;
    imageData = Mat(size, CV_8UC4, (unsigned char*)cbuf);
    input = Mat(size, CV_8UC3);
    cvtColor(imageData,input,CV_BGRA2BGR);

	vector<Plate> posible_regions = segment(input);

	const char strCharacters[] = {'0','1','2','3','4','5','6','7','8','9','B', 'C', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'R', 'S', 'T', 'V', 'W', 'X', 'Y', 'Z'};
	CvANN_MLP ann;
	//SVM for each plate region to get valid car plates,Read file storage.
	FileStorage fs;
	//strcat(path,"/SVM.xml");
	fs.open("/storage/sdcard/SVM.xml", FileStorage::READ);
	Mat SVM_TrainingData;
	Mat SVM_Classes;
	fs["TrainingData"] >> SVM_TrainingData;
	fs["classes"] >> SVM_Classes;
	if(fs.isOpened())
		LOGD("read success!");

	//Set SVM params
	LOGD("size:%d",SVM_TrainingData.rows);
	SVM_TrainingData.convertTo(SVM_TrainingData, CV_32FC1);
	SVM_Classes.convertTo(SVM_Classes, CV_32FC1);
	CvSVMParams SVM_params;
	SVM_params.svm_type = CvSVM::C_SVC;
	SVM_params.kernel_type = CvSVM::LINEAR; //CvSVM::LINEAR;
	SVM_params.degree = 0;
	SVM_params.gamma = 1;
	SVM_params.coef0 = 0;
	SVM_params.C = 1;
	SVM_params.nu = 0;
	SVM_params.p = 0;
	SVM_params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.01);
	LOGD("Everything is ready");
	//Train SVM
	LOGD("START TO ENTER SVM PREDICT");
	CvSVM svmClassifier(SVM_TrainingData, SVM_Classes, Mat(), Mat(), SVM_params);
	//For each possible plate, classify with svm if it's a plate or no
	vector<Plate> plates;
	for(int i=0; i< posible_regions.size(); i++)
	{
		Mat img=posible_regions[i].plateImg;
		Mat p= img.reshape(1, 1);
		p.convertTo(p, CV_32FC1);

		int response = (int)svmClassifier.predict( p );
		if(response==1)
			plates.push_back(posible_regions[i]);
	}
	LOGD("SVM PREDICT FINISH");
	fs.release();
	//Read file storage.
	FileStorage fs2;
	fs2.open("/storage/sdcard/OCR.xml", FileStorage::READ);
	Mat TrainingData;
	Mat Classes;
	fs2["TrainingDataF15"] >> TrainingData;
	fs2["classes"] >> Classes;
	LOGD("size:%d",TrainingData.rows);
	LOGD("START TO TRAIN MLP");
	//训练神经网络
	train(TrainingData, Classes,&ann,10);
	LOGD("FINISH TRAIN MLP");
	Mat inputs=plates[0].plateImg;
	Plate mplate;
	//dealing image and save each character image into vector<CharSegment>
	//Threshold input image
	Mat img_threshold;
	threshold(inputs, img_threshold, 60, 255, CV_THRESH_BINARY_INV);

	Mat img_contours;
	img_threshold.copyTo(img_contours);
	//Find contours of possibles characters
	vector< vector< Point> > contours;
	findContours(img_contours,
		contours, // a vector of contours
		CV_RETR_EXTERNAL, // retrieve the external contours
		CV_CHAIN_APPROX_NONE); // all pixels of each contours
	//Start to iterate to each contour founded
	vector<vector<Point> >::iterator itc= contours.begin();
	LOGD("Before extracting hist and low-resolution image");
	//Remove patch that are no inside limits of aspect ratio and area.
	while (itc!=contours.end()) {

		//Create bounding rect of object
		Rect mr= boundingRect(Mat(*itc));
		//Crop image
		Mat auxRoi(img_threshold, mr);
		if(verifySizes(auxRoi)){
			auxRoi=preprocessChar(auxRoi);
			LOGD("FINISH extracting features");
			//对每一个小方块,提取直方图特征
			Mat f=features(auxRoi,15);
			//For each segment feature Classify
			LOGD("START TO CLASSIFY IN MLP");
			int character=classify(f,&ann);
			mplate.chars.push_back(strCharacters[character]);
			LOGD("FINISH CLASSIFY");
			mplate.charsPos.push_back(mr);
			//printf("%c ",strCharacters[character]);
		}
		++itc;
	}
	fs2.release();
	string licensePlate=mplate.str();
	//const char *result;
	//result=licensePlate.c_str();
	env->ReleaseIntArrayElements(buf, cbuf, 0);

	return env->NewStringUTF(licensePlate.c_str());
}

9.最后用cygwin进行交叉编译:

打开cygwin,输入

cd /cygdrive/e/worksapce/CarPlate

ndk-build

记得按F5,并clean一下工程,这是在libs目录下有个libimage_proc.so文件,

10.通过DDMS向sdcard中添加文件:

打开虚拟机,点击DDMS:


如果能进入如下界面的话:【否则点击左半边的小倒三角,选择reset adb】


点击右半边右上角第二个按钮:


跑到如storage/sdcard目录下,将之前训练好的SVM.XML和OCR.XML都加入进去。

如果cygwin没有报错的话,然后运行我们的android applicatoin

效果图:





注意:

1.如果想玩国内车牌的话,可以用我之前 2篇文章的方法,自己人工分类图片【不用你裁剪,只要挑选就行】,并运行程序得到相应的xml文件

2.这边我的路径和资源摆放都很不够理想,暂时也想不出更好的了


完整的程序下载地址:http://download.csdn.net/detail/jinshengtao/6828651

里面的assets文件夹下有训练好的svm.xml和ocr.xml,把他放到sdcard中吧

展开阅读全文

没有更多推荐了,返回首页