文献阅读2019-Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network
方法和材料:收集了480张96个良性肿块的图像和467张144个恶性肿块的图像作为训练数据。使用CNN architecture GoogLeNet构建深度学习模型,并对测试数据进行分析:良性肿块48个,恶性肿块72个。三位放射学家解释了这些测试数据。计算敏感性、特异性、准确性和接受者工作特征曲线下面积。
数据集:
GoogleNet是一个22层的深网,在3层卷积层之后有9个嵌入单元,在最终输出之前有一个完全连接的层。GoogleNet Inception v2是对GoogleNet的一个改进,它拥有一项重要的深度学习技术,称为批处理归一化,用于在进入下一层之前对值分布进行归一化。
在监督学习中使用了一种没有微调的架构,批量大小为32个和50个epoch,因为具有较高的准确性和较低的数据损失(如下图)。
CNN模型和三个放射学家对BI-RADS的分类结果:
观察一致性:
敏感性,特异性,准确性和AUC
讨论:在他们的研究中,放射科医师被要求确定乳房肿块的感兴趣区域;然而,在我们的研究中,这并不是必需的,因为图像只是修剪包括皮肤到胸壁。因此,我们的研究比他们的研究更简单,更具有可重复性。据我们所知,我们的研究是第一个直接比较CNN模型和放射科医生使用超声鉴别良恶性乳腺肿块的诊断性能的研究。
局限性:这项研究有几个局限性。首先,这项回顾性研究是在单一机构进行的。因此,有必要进行更广泛、多中心的研究来验证本研究的结果。其次,并不是所有的复发性病变都能通过细胞学或组织学诊断。第三。我们使用转换为256x 256像素的图像进行这项研究。这种图像处理可能会导致信息的丢失,从而影响模型的性能。第四,由于我们使用了两家公司的三套超声系统,在使用其他超声系统图像进行测试时,学习结果的适应性可能存在问题。因此,其他超声系统是否也能表现出良好的性能还需要进一步的研究。